1 / 15

Model ARIMA Box-Jenkins

Model ARIMA Box-Jenkins. Pertemuan 11. Metodologi Box-Jenkins:. . 1. Identifikasi model untuk sementara  data lampau digunakan untuk mengidentifikasi model ARIMA yang sesuai. 2. Penaksiran parameter pada model sementara

katoka
Download Presentation

Model ARIMA Box-Jenkins

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Model ARIMA Box-Jenkins Pertemuan 11

  2. Metodologi Box-Jenkins:  1. Identifikasi model untuk sementara  data lampau digunakan untuk mengidentifikasi model ARIMA yang sesuai. 2. Penaksiran parameter pada model sementara  data lampau digunakan untuk mengestimasi parameter dari model sementara. 3. Pemeriksaan diagnosa, apakah model memadai?  berbagai diagnosa digunakan untuk memeriksa kecukupan model sementara. jika memenuhi, maka model bisa digunakan untuk meramalkan. Bila tidak, maka ditetapkan model sementara yang baru. 4. Meramalkan  model sementara yang sudah sesuai dapat digunakan untuk meramalkan nilai yang akan datang.  

  3. Diagram Metodologi Box-Jenkins  Stationary dannon- stationary ACF dan PACF 1. Identifikasi model sementara 2. Estimasi parameter Tdk  Testing parameter  Tingkat residu  Distribusi Normal dari residual 3. Pemeriksaaan diagnosa [ apakah modelmemadai? ] Ya 4. Meramalkan  Perhitungan peramalan

  4. Pola umum data time series  Nonseasonal Stationary models  Nonseasonal Nonstationary models  Intervention models  Seasonal and Multiplicative models ACF dan PACF

  5. Stationary dan Nonstationary data Time Series Stationer Nonstationer

  6. Perbedaan pertama: Zt = Y2t – Y2t-1 Nonstationer Differences Stationer

  7. Sample Autocorrelation Function (ACF) For the working series Z1, Z2, …, Zn :

  8. 1 1 0 8 8 Lag k 0 Lag k -1 -1 1 1 0 0 8 8 Lag k Lag k -1 -1 ACF for stationary time series dies down (exponential) cuts off no oscillation dies down (sinusoidal) dies down (exponential) oscillation

  9. 1 1 Lag k 0 0 8 -1 -1 Lag k 8 Dying down fairly quickly versus extremely slowly Dying down fairly quickly stationary time series (usually) Dying down extremely slowly nonstationary time series (usually)

  10. Sample Partial Autocorrelation Function (PACF) For the working series Z1, Z2, …, Zn : Corr(Zt,Zt-k|Zt-1,…,Zt-k+1)

  11. Calculation of PACF at lag 1, 2 and 3 The sample partial autocorelations at lag 1, 2 and 3 are:

  12. MINITAB output of STATIONARY time series ACF PACF Dying down fairly quickly Cuts off after lag 2

  13. MINITAB output of NONSTATIONARY time series ACF PACF Cuts off after lag 2 Dying down extremely slowly

  14. Explanation of ACF … [MINITAB output]  + +   t/2 . se(rk)  t/2 . se(rk)

  15. General Theoretical ACF and PACF of ARIMA Models ModelACFPACF MA(q): moving average of order qCuts offDies downafter lag q AR(p): autoregressive of order pDies downCuts offafter lag p ARMA(p,q): mixed autoregressive-Dies downDies downmoving average of order (p,q) AR(p) or MA(q)Cuts offCuts offafter lag qafter lag p No order AR or MANo spikeNo spike(White Noise or Random process)

More Related