1 / 44

Floating Point Numbers

Floating Point Numbers. CS208. Floating Point Numbers. Now you've seen unsigned and signed integers. In real life we also need to be able represent numbers with fractional parts (like: -12.5 & 45.39). . Called Floating Point numbers.

katy
Download Presentation

Floating Point Numbers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Floating Point Numbers CS208

  2. Floating Point Numbers • Now you've seen unsigned and signed integers. In real life we also need to be able represent numbers with fractional parts (like: -12.5 & 45.39). • Called Floating Point numbers. • You will learn the IEEE 32-bit floating point representation.

  3. Floating Point Numbers • In the decimal system, a decimal point (radixpoint) separates the whole numbers from the fractional part • Examples: 37.25 ( whole = 37, fraction = 25/100) 123.567 10.12345678

  4. Floating Point Numbers For example, 37.25 can be analyzed as: 101 100 10-1 10-2 Tens Units Tenths Hundredths 3 7 2 5 37.25 = (3 x 10) + (7 x 1) + (2 x 1/10) + (5 x 1/100)

  5. Binary Equivalence The binary equivalent of a floating point number can be determined by computing the binary representation for each part separately. • 1) For the whole part: • Use subtraction or division method previously learned. • 2) For the fractional part: • Use the subtraction or multiplication method (to be shown next)

  6. Fractional Part – Multiplication Method In the binary representation of a floating point number the column values will be as follows: …25 24 23 22 21 20 . 2-1 2-2 2-3 2-4 … …32 16 8 4 2 1 . 1/2 1/4 1/8 1/16… … 32 16 8 4 2 1 . .5 .25 .125 .0625…

  7. Fractional Part – Multiplication Method Ex 1. Find the binary equivalent of 0.25 Step 1: Multiply the fraction by 2 until the fractional part becomes 0.25 x 2 0.5 x 2 1.0 Step 2: Collect the whole parts in forward order. Put them after the radix point . .5 .25 .125 .0625 .0 1

  8. Fractional Part – Multiplication Method Ex 2. Find the binary equivalent of 0.625 Step 1: Multiply the fraction by 2 until the fractional part becomes 0.625 x 2 1.25 x 2 0.50 x 2 1.0 Step 2: Collect the whole parts in forward order. Put them after the radix point . .5 .25 .125 .0625 .1 0 1

  9. Fractional Part – Subtraction Method Start with the column values again, as follows: …20 . 2-1 2-2 2-3 2-4 2-5 2-6… …1 . 1/2 1/4 1/8 1/16 1/32 1/64… … 1 . .5 .25 .125 .0625 .03125 .015625…

  10. Fractional Part – Subtraction Method Starting with 0.5, subtract the column values from left to right. Insert a 0 in the column if the value cannot be subtracted or 1 if it can be. Continue until the fraction becomes .0 Ex 1. .25 .5 .25 .125 .0625 - .25.0 1 .0

  11. Binary Equivalent of FP number Ex 2. Convert 37.25, using subtraction method. 64 32 16 8 4 2 1 . .5 .25 .125 .0625 26 25 24 23 22 21 20. 2-1 2-2 2-3 2-4 1 0 0 1 0 1 37 - 32 5 - 4 1 -1 0 . 0 1 .25 - .25 .0 37.2510 = 100101.012

  12. Binary Equivalent of FP number Ex 3. Convert 18.625, using subtraction method. 64 32 16 8 4 2 1 . .5 .25 .125 .0625 26 25 24 23 22 21 20. 2-1 2-2 2-3 2-4 1 0 0 1 0 1 0 1 18 .625 - 16 - .5 2 .125 - 2- .125 0 0 18.62510 = 10010.1012

  13. Try It Yourself Convert the following decimal numbers to binary: 60.7510 190.562510 (Answers on next page)

  14. Answers 60.7510 = 111100.112 190.562510 = 10111110.10012

  15. Problem storing binary form • We have no way to store the radix point! • Standards committee came up with a way to store floating point numbers (that have a decimal point)

  16. IEEE Floating Point Representation • Floating point numbers can be stored into 32-bits, by dividing the bits into three parts: the sign, the exponent, and the mantissa. 1 2 9 10 32

  17. IEEE Floating Point Representation • The first (leftmost) field of our floating point representation will STILL be the sign bit: • 0 for a positive number, • 1 for a negative number.

  18. Storing the Binary Form How do we store a radix point? - All we have are zeros and ones… Make sure that the radix point is ALWAYS in the same position within the number. Use the IEEE 32-bit standard  the leftmost digit must be a 1

  19. Solution is Normalization Every binary number, except the one corresponding to the number zero, can be normalized by choosing the exponent so that the radix point falls to the right of the leftmost 1 bit. 37.2510 = 100101.012 = 1.0010101 x 25 7.62510 = 111.1012 = 1.11101 x 22 0.312510 = 0.01012 = 1.01 x 2-2

  20. IEEE Floating Point Representation • The second field of the floating point number will be the exponent. • The exponent is stored as an unsigned 8-bit number, RELATIVE to a bias of 127. • Exponent 5 is stored as (127 + 5) or 132 • 132 = 10000100 • Exponent -5 is stored as (127 + (-5)) or 122 • 122 = 01111010

  21. Try It Yourself How would the following exponents be stored (8-bits, 127-biased): 2-10 28 (Answers on next slide)

  22. Answers 2-10 exponent -10 8-bit bias +127value 117  01110101 28 exponent 8 8-bit bias +127value 135  10000111

  23. IEEE Floating Point Representation • The mantissa is the set of 0’s and 1’s to the left of the radix point of the normalized (when the digit to the left of the radix point is 1) binary number. Ex: 1.00101 X 23 (The mantissa is 00101) • The mantissa is stored in a 23 bit field, so we add zeros to the right side and store: • 00101000000000000000000

  24. Decimal Floating Point toIEEE standard Conversion Ex 1: Find the IEEE FP representation of 40.15625 Step 1. Compute the binary equivalent of the whole part and the fractional part. (i.e. convert 40 and .15625 to their binary equivalents)

  25. Decimal Floating Point toIEEE standard Conversion   40 .15625 - 32Result:-.12500Result: 8 101000 .03125 .00101 - 8-.03125 0 .0 So: 40.1562510= 101000.001012

  26. Decimal Floating Point toIEEE standard Conversion Step 2. Normalize the number by moving the decimal point to the right of the leftmost one. 101000.00101 = 1.0100000101 x 25

  27. Decimal Floating Point toIEEE standard Conversion Step 3. Convert the exponent to a biased exponent 127 + 5 = 132 And convert biased exponent to 8-bit unsigned binary: 13210 = 100001002

  28. Decimal Floating Point toIEEE standard Conversion Step 4. Store the results from steps 1-3: Sign Exponent Mantissa (from step 3) (from step 2) 0 10000100 01000001010000000000000

  29. Decimal Floating Point toIEEE standard Conversion Ex 2: Find the IEEE FP representation of –24.75 Step 1. Compute the binary equivalent of the whole part and the fractional part.  24 .75 - 16 Result: - .50 Result: 8 11000 .25 .11 - 8- .25 0 .0   So: -24.7510= -11000.112

  30. Decimal Floating Point toIEEE standard Conversion Step 2. Normalize the number by moving the decimal point to the right of the leftmost one. -11000.11 = -1.100011 x 24

  31. Decimal Floating Point toIEEE standard Conversion. Step 3. Convert the exponent to a biased exponent 127 + 4 = 131 ==> 13110 = 100000112 Step 4. Store the results from steps 1-3 Sign Exponent mantissa 1 10000011 1000110..0

  32. Try It Yourself • Convert the following numbers to IEEE floating point representation: • 60.7510 • -190.562510

  33. Answers 60.7510 = 0 10000100 11100110..0 -190.562510 = 1 10000110 011111010010..0

  34. IEEE standard to Decimal Floating Point Conversion. • Do the steps in reverse order • In reversing the normalization step move the radix point the number of digits equal to the exponent: • If exponent is positive, move to the right • If exponent is negative, move to the left

  35. IEEE standard to Decimal Floating Point Conversion. Ex 1:  Convert the following 32-bit binary number to its decimal floating point equivalent: Sign Exponent Mantissa 1 01111101 010..0

  36. IEEE standard to Decimal Floating Point Conversion.. Step 1: Extract the biased exponent and unbias it Biased exponent = 011111012 = 12510 Unbiased Exponent: 125 – 127 = -2

  37. IEEE standard to Decimal Floating Point Conversion.. Step 2: Write Normalized number in the form: 1 . ____________ x 2 ---- For our number: -1. 01 x 2 –2 Exponent Mantissa

  38. IEEE standard to Decimal Floating Point Conversion. Step 3: Denormalize the binary number from step 2 (i.e. move the decimal and get rid of (x 2n) part): -0.01012(negative exponent – move left) Step 4: Convert binary number to the FP equivalent (i.e. Add all column values with 1s in them) -0.01012 = - ( 0.25 + 0.0625) = -0.312510

  39. IEEE standard to Decimal Floating Point Conversion. Ex 2: Convert the following 32 bit binary number to its decimal floating point equivalent: SignExponentMantissa 0 10000011 10011000..0

  40. IEEE standard to Decimal Floating Point Conversion.. Step 1: Extract the biased exponent and unbias it Biased exponent = 10000112 = 13110 Unbiased Exponent: 131 – 127 = 4

  41. IEEE standard to Decimal Floating Point Conversion.. Step 2: Write Normalized number in the form: 1 . ____________ x 2 ---- For our number: 1.10011 x 2 4 Exponent Mantissa

  42. IEEE standard to Decimal Floating Point Conversion. Step 4: Convert binary number to the FP equivalent (i.e. Add all column values with 1s in them) 11001.1 = 16 + 8 + 1 +.5 = 25.510 Step 3: Denormalize the binary number from step 2 (i.e. move the decimal and get rid of (x 2n) part: 11001.12 (positive exponent – move right)

  43. Try It Yourself Convert the following IEEE floating point numbers to decimal: 0 10000010 1110010..0 0 10000110 01010..0 1 01111101 10100..0

  44. Answers 0 10000010 1110010..0 = 15.12510 0 10000110 01010..0 = 168.010 1 01111101 10100 = -0.4062510

More Related