140 likes | 165 Views
Attend the Best Machine learning training Courses in Bangalore From ExcelR. Practical Machine learningTraining Sessions with Assured Placement From Excelr Solutions.<br><br><a href=u201d https://www.excelr.com/machine-learning-course-training-in-bangaloreu201d> machine learning course</a><br>
E N D
Understandingneuralnetworks AnArtificialNeuralNetwork(ANN)modelstherelationshipbetweenasetofinputsignalsandanoutputsignalusingamodelderivedfromourunderstandingofhowabiologicalbrainrespondstostimulifromsensoryinputs.Justasabrainusesanetworkofinterconnectedcellscalledneuronstocreateamassiveparallelprocessor,ANNusesanetworkofartificialneuronsornodestosolvelearningproblems Thehumanbrainismadeupofabout85billionneurons,resultinginanetworkcapableofrepresentingatremendousamountofknowledge Forinstance,acathasroughlyabillionneurons,amousehasabout75millionneurons,andacockroachhasonlyaboutamillionneurons.Incontrast,manyANNscontainfarfewerneurons,typicallyonlyseveralhundred,sowe'reinnodangerofcreatinganartificialbrainanytimeinthenearfuture
Biologicaltoartificialneurons Incomingsignalsarereceivedbythecell'sdendritesthroughabiochemicalprocess.Theprocessallowstheimpulsetobeweightedaccordingtoitsrelativeimportanceorfrequency.Asthecellbodybeginsaccumulatingtheincomingsignals,athresholdisreachedatwhichthecellfiresandtheoutputsignalistransmittedviaanelectrochemicalprocessdowntheaxon.Attheaxon'sterminals,theelectricsignalisagainprocessedasachemicalsignaltobepassedtotheneighbouringneurons.
Thisdirectednetworkdiagramdefinesarelationshipbetweentheinputsignalsreceivedbythedendrites(xvariables),andtheoutputsignal(yvariable).Justaswiththebiologicalneuron,eachdendrite'ssignalisweighted(wvalues)accordingtoitsimportance.TheinputsignalsaresummedbythecellbodyandthesignalispassedonaccordingtoanactivationfunctiondenotedbyfThisdirectednetworkdiagramdefinesarelationshipbetweentheinputsignalsreceivedbythedendrites(xvariables),andtheoutputsignal(yvariable).Justaswiththebiologicalneuron,eachdendrite'ssignalisweighted(wvalues)accordingtoitsimportance.Theinputsignalsaresummedbythecellbodyandthesignalispassedonaccordingtoanactivationfunctiondenotedbyf Atypicalartificialneuronwithninputdendritescanberepresentedbytheformulathatfollows.Thewweightsalloweachoftheninputs(denotedbyxi)tocontributeagreaterorlesseramounttothesumofinputsignals.Thenettotalisusedbytheactivationfunctionf(x),andtheresultingsignal,y(x),istheoutputaxon
Inbiologicalsense,theactivationfunctioncouldbeimaginedasaprocessthatinvolvessummingthetotalinputsignalanddeterminingwhetheritmeetsthefiringthreshold.Ifso,theneuronpassesonthesignal;otherwise,itdoesnothing.InANNterms,thisisknownasathresholdactivationfunction,asitresultsinanoutputsignalonlyonceaspecifiedinputthresholdhasbeenattainedInbiologicalsense,theactivationfunctioncouldbeimaginedasaprocessthatinvolvessummingthetotalinputsignalanddeterminingwhetheritmeetsthefiringthreshold.Ifso,theneuronpassesonthesignal;otherwise,itdoesnothing.InANNterms,thisisknownasathresholdactivationfunction,asitresultsinanoutputsignalonlyonceaspecifiedinputthresholdhasbeenattained Thefollowingfiguredepictsatypicalthresholdfunction;inthiscase,theneuronfireswhenthesumofinputsignalsisatleastzero.Becauseitsshaperesemblesastair,itissometimescalledaunitstepactivationfunction
Networktopology • Theabilityofaneuralnetworktolearnisrootedinitstopology,or • thepatternsandstructuresofinterconnectedneurons • keycharacteristics • Thenumberoflayers • Whetherinformationin thenetworkisallowedto travel backward • Thenumberofnodeswithineachlayer of thenetwork
Numberoflayers Theinputandoutputnodesarearrangedingroupsknownaslayers Inputnodesprocesstheincomingdataexactlyasitisreceived,thenetworkhasonlyonesetofconnectionweights(labeledhereasw1,w2,andw3).Itisthereforetermedasingle-layernetwork
ASupportVectorMachine(SVM)canbeimaginedasasurfacethatcreatesaboundarybetweenpointsofdataplottedinmultidimensionalthatrepresentexamplesandtheirfeaturevaluesASupportVectorMachine(SVM)canbeimaginedasasurfacethatcreatesaboundarybetweenpointsofdataplottedinmultidimensionalthatrepresentexamplesandtheirfeaturevalues ThegoalofaSVMistocreateaflatboundarycalledahyperplane,which dividesthespacetocreatefairlyhomogeneouspartitionsoneitherside SVMscanbeadaptedforusewithnearlyanytypeoflearningtask, includingbothclassificationandnumericprediction
Classificationwithhyperplanes Forexample,thefollowingfiguredepictshyperplanesthatseparategroupsofcirclesandsquaresintwoandthreedimensions.Becausethecirclesandsquarescanbeseparatedperfectlybythestraightlineorflatsurface,theyaresaidtobelinearlyseparable
Which isthe“best” Fit! Intwodimensions,thetaskoftheSVMalgorithmistoidentifyalinethatseparatesthetwoclasses.Asshowninthefollowingfigure,thereismorethanonechoiceofdividinglinebetweenthegroupsofcirclesandsquares.Howdoesthealgorithmchoose
Usingkernelsfornon-linearspaces AkeyfeatureofSVMsistheirabilitytomaptheproblemintoahigherdimensionspaceusingaprocessknownasthekerneltrick.Indoingso,anonlinearrelationshipmaysuddenlyappeartobequitelinear. Afterthekerneltrickhasbeenapplied,welookatthedatathroughthelensofanewdimension:altitude.Withtheadditionofthisfeature,theclassesarenowperfectlylinearlyseparable