460 likes | 570 Views
Logical Agents عاملهاي منطقي. Chapter 7 (part 2) Modified by Vali Derhami. Proof methods. Proof methods divide into (roughly) two kinds: Application of inference rules Legitimate (sound) generation of new sentences from old
E N D
Logical Agentsعاملهاي منطقي Chapter 7 (part 2) Modified by Vali Derhami
Proof methods • Proof methods divide into (roughly) two kinds: • Application of inference rules • Legitimate (sound) generation of new sentences from old • Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search algorithm • Typically require transformation of sentences into a normal form • Model checking • truth table enumeration (always exponential in n) improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL) • heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms
Reasoning Patterns in Propositional Logic • Inference rules: The patterns of inference: 1-Modus Ponens (قياس استثنايي) 2-And –Elimination • تمامي هم ارزهاي منطقي در اسلايد 28از قسمت اول مي توانند بعنوان قاعده استنتاج بكار روند • اثبات : دنباله اي از كاربردهاي قواعد اسنتاج • يكنواختي:مجموعه جملات ايجاب شده فقط زماني مي تواند افزايش يابند كه اطلاعاتي به پايگاه دانش افزوده شود.
Resolution تحليل: تحليل: يك روش استنتاج ساده در صورت همراه شدن با هر الگوريتم جستجوي كامل، يك الگوريتم استنتاج كامل را ايجاد ميكند • In Wumpus world, consider the agent returns from [2,1] to [1,1] and thengoes to [1,2], where it perceives a stench, but no breeze. We add the following facts to theknowledge base:
تحليل (ادامه) we can now derive the absence of pits in [2,2] and [1,3],([1,1] is already known( Respect to R11 and R12: Known from past: : Respect to R15 and Rr13: Respect to R10 (R10 : P11), and R16:
تحليل(ادامه) Conjunctive Normal Form (CNF)(فرم نرمال عطفي) conjunction of disjunctions of literals (clauses) تركيب AND از ليترال كه با هم ORشده اند. Literal: a atomic sentence. Ex; P , Q , or , A Clause: a disjunction of literals. E.g., (A B) (B C D) • Unit resolution inference rule: Where li and m are complementary literals
تحليل(ادامه) • Full Resolution inference rule (for CNF): l1… lk, m1 … mn l1 … li-1 li+1 … lkm1 … mj-1 mj+1... mn where li and mj are complementary literals. E.g., P1,3P2,2, P2,2 P1,3 • Using any complete search, • Resolution is sound and complete for propositional logic توجه، تحليل هميشه مي تواند براي اثبات ياتكذيب يك جمله استفاده شود
Conversion to CNFتبديل به فرم نرمال عطفي B1,1 (P1,2 P2,1) • Eliminate , replacing α β with (α β)(β α). (B1,1 (P1,2 P2,1)) ((P1,2 P2,1) B1,1) 2. Eliminate , replacing α β with α β. (B1,1 (P1,2 P2,1)) ((P1,2 P2,1) B1,1) 3. Move inwards using de Morgan's rules and double-negation: (B1,1 P1,2 P2,1) ((P1,2 P2,1) B1,1) 4. Apply distributivity law ( over ) and flatten: (B1,1 P1,2 P2,1) (P1,2 B1,1) (P2,1 B1,1)
Resolution algorithm • Proof by contradiction, i.e., to Prove KB a, show KBα unsatisfiable
Steps in Resolution algorithm • (KB a) is converted into CNF. • The resolution rule is applied to the resulting clauses. Each pair that contains complementary literals is resolved to produce a new clause, which is added to the set if it is not already present. • The process continues until one of two things happens: 1- two clauses resolve to yield the empty clause, in which case KB entails a. 2- there are no new clauses that can be added, in which case KB does not entail a.
Resolution example • KB = (B1,1 (P1,2 P2,1)) B1,1 ,α = P1,2
Forward and backward chaining • Horn Form (restricted): فرم محدود شده اي از فرم نرمال عطفي است • تركيب OR از ليترال ها كه حداكثر يكي از آنها مثبت است. • مزاياي آن: 1- تبديل به فرم شرطي P 1,1 B1,1 P1,2 (P 1,1 P1,2) B1,1 (P 1,1 P1,2) B1,1 KB = conjunction of Horn clauses • Horn clause = • proposition symbol; or • (conjunction of symbols) symbol • E.g., C (B A) (C D B) • بندهاي هورني كه دقيقا يك ليترال مثبت دارند را بند معين (Definite clause) مي نامند
Forward and backward chaining • 2-اجازه استناج با استفاده از قياس استثنايي: • Modus Ponens (for Horn Form): complete for Horn KBs α1, … ,αn, α1 … αnβ β • Can be used with forward chaining or backward chaining. • 3- زمان تصميم گيري در مورد ايجاب در بندهاي هورن مي تواند بر حسب اندازه پايگاه دانش بصورت خطي باشد: • These algorithms are very natural and run in linear time
Forward and backward chaining A Horn clause with no positive literals can be written as an implication whose conclusion is the literal False. Ex: —wumpus cannot be in both [1,1] and [1,2]—is equivalent to . Such sentences are called integrity(کامل( constraints in the database world,
Forward chaining • Idea: fire any rule whose premises are satisfied in the KB, • add its conclusion to the KB, until query is found
Forward chaining algorithm • Forward chaining is sound and complete for Horn KB
Proof of completeness • FC derives every atomic sentence that is entailed by KB • FC reaches a fixed point where no new atomic sentences are derived • Consider the final state as a model m, assigning true/false to symbols • Every clause in the original KB is true in m a1 … ak b • Hence m is a model of KB • If KB╞ q, q is true in every model of KB, including m
Backward chaining Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q Avoid loops: check if new subgoal is already on the goal stack Avoid repeated work: check if new subgoal has already been proved true, or has already failed
Forward vs. backward chaining • FC is data-driven, automatic, unconscious processing (پروسس بي هدف), appropritate for Design, Control. • e.g., object recognition, routine decisions • May do lots of work that is irrelevant to the goal • BC is goal-driven, appropriate for problem-solving, Diagnosis, • e.g., Where are my keys? How do I get into a PhD program? • Complexity of BC can be much less than linear in size of KB
Efficient propositional inference Two families of efficient algorithms for propositional inferenceon Model checking: • Complete backtracking search algorithms • DPLL algorithm (Davis, Putnam, Logemann, Loveland) • Incomplete local search algorithms • WalkSAT algorithm
The DPLL algorithm Determine if an input propositional logic sentence (in CNF) is satisfiable. استفاده از روش عمق اول براي يافتن مدل. Improvements over truth table enumeration: • Early termination A clause is true if any literal is true. A sentence is false if any clause is false. • Pure symbol heuristic Pure symbol: always appears with the same "sign" in all clauses. e.g., In the three clauses (A B), (B C), (C A), A and B are pure, C is impure. Make a pure symbol literal true. آگر جمله مدلي داشته باشد لذا مقدار سمبل هاي خالص مي تواند به گونه اي مقدار دهی شودند كه بند مربوطه اشان را صحيح كند. • Unit clause heuristic Unit clause: only one literal in the clause The only literal in a unit clause must be true. در واقع مقدار دهی تمام بندهای واحد قبل از انشعاب درخت
The WalkSAT algorithm • Incomplete, local search algorithm • هدف يافتن انتسابي است كه تمام بندها را ارضا كند.تابع ارزيابي كه تعداد بندهاي ارضا نشده را بشمارد از عهده اين كار بر مي آيد. • On every iteration, the algorithm picks an unsatisfied clause and picks a symbol in the clause to flip. It chooses randomly between two ways to pick which symbol to flip: A) a "min-conflicts" step thatminimizes the number of unsatisfied clauses in the new state, and B) a random walk" step that picks the symbol randomly. • Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses • Balance between greediness and randomness
Hard satisfiability problems • Consider random 3-CNF sentences. e.g., (D B C) (B A C) (C B E) (E D B) (B E C) m = number of clauses n = number of symbols • Hard problems seem to cluster near m/n = 4.3 (critical point)
Hard satisfiability problems • Median runtime for 100 satisfiable random 3-CNF sentences, n = 50