180 likes | 278 Views
Run II Standard Model Higgs Searches at DØ. Gavin Davies Imperial College London On behalf of the DØ Collaboration. SUSY2004 Epochal Tsukuba, Tsukuba, Japan. Chicago . p. p. 1.96 TeV. Booster. p. CDF. DØ. Tevatron. p. p sou rce. Main Injector & Recycler. Outline.
E N D
Run II Standard Model Higgs Searches at DØ Gavin Davies Imperial College London On behalf of the DØ Collaboration SUSY2004 Epochal Tsukuba, Tsukuba, Japan
Chicago p p 1.96 TeV Booster p CDF DØ Tevatron p p source Main Injector & Recycler Outline • Introduction • Tevatron • DØ detector • Higgs production / sensitivity • Results • Wbb / WH production • s(Z+b) / s(Z+j) ratio • HWW l+l-nn searches (Non-SM results – see A. Turcot) • Conclusion 36×36 bunches 396 ns bunch crossing Thanks to all my DØ colleagues Gavin Davies (Imperial)
Tevatron Performance - I 79% Average Efficiency 89% Current Efficiency Gavin Davies (Imperial)
Tevatron Performance - II FY04 integratedluminosity Measured Lumi 05/09/04 Gavin Davies (Imperial)
DØ detector “Build on existing strengths by improving the tracking and triggering” • New (tracking in B field) • Silicon tracker • Fibre tracker • Preshowers • Solenoid • Upgraded • Muon system • Calorimeter • DAQ/ trigger All needed for Higgs searches Gavin Davies (Imperial)
SM Higgs production • Cross sections small: 0.1 - 1 pb • MH 135 GeV: decay to bb • gg H: QCD background too large • HW & HZ associated production • lower (but still large!) bkgd. • Best channels: WH→lνbb, ZH→ννbb, ZH→llbb • MH >135 GeV: decay to WW • gg H WW(*)l+l- • BR small H bb H WW(*) Dominant decay modes Gavin Davies (Imperial)
No systematics SM Higgs sensitivity • New CDF+DØ in 2003 • More detailed simulation • More refined analysis • Improved sensitivity • Global fit – light Higgs • MH = 117 GeV • MH < 251 GeV at 95% C.L. +67 • LEP limit from direct searches • MH > 114.4 GeV at 95% C.L. -45 Gavin Davies (Imperial)
Cross Sections (fb) Higgs The Challenge • QCD & EWK cross sections much larger • Needle in the haystack… • Good understanding of detector, trigger.. • Good understanding of SM backgrounds • Use data & MC to estimate them • Useful: new enhanced LO MC’s (Alpgen) • Study background processes • Likelihood methods, NN’s require excellent modeling of backgrounds • Look at channels beyond SM (SUSY) with enhanced cross section (A. Turcot) Gavin Davies (Imperial)
b-tagging efficiency vs light quark mis-tag rate DØ RunII Preliminary b-jet tagging • Essential for Hbb searches Can b-tag up to |η| < 2.5 IP • Use track impact parameter (IP) measurements or secondary vertex reconstruction • Several algorithms available • Performance being improved (Also have on-line b-tagging) Gavin Davies (Imperial)
W(en)bb associated production - I • Background to WH search • Event selection • Central isolated e, pT > 20 GeV • Missing ET > 25 GeV • ≥ two jets: ET > 20 GeV, |h| < 2.5 • 2587 events (Lint=174 pb-1) • MC: Alpgen & Pythia • + detailed detector response • Cross sections normalized to MCFM NLO calculations Good understanding of data Gavin Davies (Imperial)
At least two b-tags W(en)bb associated production -II • Require jets to be b-tagged • Use various b-tag algorithms • All yield consistentresults At least one b-tag • Observe 8 events, expect 8.3±2.2 • Bkgd. dominated by top events Good agreement between data and MC Gavin Davies (Imperial)
115 GeV W(en)bb associated production -III • Exactly 2 jets: suppress top production • Observe 2 events, expect 2.5±0.5 • Sample composition • Set limit on production of s(Wbb) < 20.3 pb(95%c.l.) s(WH) x B(Hbb) < 12.4 pbfor MH = 115 GeV(95%c.l.) • Systematics Gavin Davies (Imperial)
Motivation Background to ZH search Benchmark for SUSY Higgs production via gbbh Probes PDF of the b-quark Examples of ZQ (Zj) LO diagrams Measure cross section ratio s(Z+b)/s(Z+j) Many uncertainties cancel Z(ee/mm)bassociated production - I • Lumi of 184 (ee), 152 (mm) pb-1 • Event selection • Isolated e/m with pT > 15/20 GeV, |h| < 2.5/2.0 • Z peak for signal, side bands for bkgd. evaluation • Jet ET > 20 GeV, |h| < 2.5 • At least one b-tagged jet • MC: Pythia or Alpgen + detaileddetector response • Cross sections normalized to data • Relative b- and c-quark content from MCFM NLO calculations Gavin Davies (Imperial)
Z(ee/mm)bassociated production - II • Z+b/Z+j cross section ratio 0.024 ± 0.005 (stat) (syst) Theory: ~0.02 (hep-ph/0312024) • Systematics • Transverse energy spectrum of b-tagged jets • QCD and mistag bkgd. estimated from data • MC: Pythia Zb normalized to data + 0.005 – 0.004 Gavin Davies (Imperial)
H WW(*) l+l-nn (l = e, m) - I • Event selection • Isolated e/m • pT(e1) > 12 GeV, pT(e2) > 8 GeV • pT(e/m1) > 12 GeV, pT(e/m2) > 8 GeV • pT(m1) > 20 GeV, pT(m2) > 10 GeV • Missing ET> • 20 GeV (ee, em); 30 GeV (mm) • Veto on • Z resonance • Energetic jets • MC: Pythia + detailed detector response • Rates normalized to NLO cross section values • Lumi. of ~ 180 (ee), 160 (em) and 150 (mm) pb-1 Data vs MC after preselection Gavin Davies (Imperial)
e+ n W+ n W- e- H WW(*) l+l-nn (l = e, m) - II • Higgs mass reconstruction not possible due to two neutrinos • Spin correlations suppress bkgd. • Df(ll) variable is particularly useful Azimuthal angle between e and m (after event pre-selection) Higgs of 160 GeV • Charged leptons from Higgs collinear Good agreement between data and MC Gavin Davies (Imperial)
H WW(*) l+l-nn (l = e, m) - III • Signal acceptance is ~ 0.02 – 0.2 (Higgs mass/final state) • Number of events after cuts Excluded cross section times Branching Ratio • Dominant bkgd. in em sample DØ Run II Preliminary Higgs of 160 GeV Gavin Davies (Imperial)
Conclusions • SM Higgs searches at DØ underway • Good understanding of backgrounds • First Tevatron Run II Results • Limits set on Wbb, WH and HWW(*) production • s(Z+b) / s(Z+j) measured Many more results to come with improved statistics Gavin Davies (Imperial)