140 likes | 270 Views
Digital Signal Processing Solutions to Midterm Exam 2009 Edited by Shih-Ming Huang Confirmed by Prof. Jar-Ferr Yang LAB: 92923 R, TEL: ext. 621 E-mail: smhuang@video5.ee.ncku.edu.tw Page of MediaCore: http://mediawww.ee.ncku.edu.tw.
E N D
Digital Signal ProcessingSolutions to Midterm Exam 2009Edited by Shih-Ming HuangConfirmed by Prof. Jar-Ferr YangLAB: 92923 R, TEL: ext. 621E-mail: smhuang@video5.ee.ncku.edu.twPage of MediaCore: http://mediawww.ee.ncku.edu.tw
1. (1) a e (2) c d (3) d (4) a b c e 2. Stable: b c e f Casual: e Memory: All 3. (a) stable, casual, initial value = 1/3 at position 1 (b) unstable, non-casual, final value = -1 at position 1 (c) unstable, non-casual, final value = 2 at position 2 (d) stable, non-casual, None (e) unstable, non-casual, final value = 1 at position 2 (f) unstable, non-casual, initial value = 1/2 at position -1
1 (1) is y[n] = nx[2n] linear? Sol: Step 1: y1[n]=T(x1[n])=nx1[2n] Step 2: y2[n]=T(x2[n])=nx2[2n] Step 3: y3[n]=T(x1[n] + x2[n])=n(x1[2n]+x2[2n]) Step 4: y3[n] = y1[n]+y2[n]
1 (2) is y[n] = x2[n] time-invariant? Sol: Step 1: y1[n]= x2[n-n0] Step 2: y[n- n0]= x2[n- n0] = y1[n]= x2[n-n0]
4 a b c d
5 a b
7 a b
8. a b
9. a b
10. (a) (b)
-p/T -p -3p p/T p 3p 11. 1/T x[n] 0 xc(t) 1/T … v[n] 2p -2p 0 -p p p/3 -p/3 1/3T … … w[n] 0 yc(t) p -3p 3p -p T’/3T 1/3T … … y[n] p -3p 3p -p p/3T -p/3T 2p -2p 4p 0 0
12. with 0.5rL < ROCY < 0.5rU