260 likes | 284 Views
Explore conditional independence, syntax, semantics, and exact & approximate inference in belief networks. Learn constructing algorithms and examples of car diagnosis and insurance. CS 561 Session 29.
E N D
Belief networks • Conditional independence • Syntax and semantics • Exact inference • Approximate inference CS 561, Session 29
Independence CS 561, Session 29
Conditional independence CS 561, Session 29
Conditional independence CS 561, Session 29
Conditional independence CS 561, Session 29
Belief networks CS 561, Session 29
Example CS 561, Session 29
Semantics CS 561, Session 29
Semantics CS 561, Session 29
Markov blanket CS 561, Session 29
Constructing belief networks CS 561, Session 29
Example CS 561, Session 29
Example: car diagnosis CS 561, Session 29
Example: car insurance CS 561, Session 29
Compact conditional distributions CS 561, Session 29
Compact conditional distributions CS 561, Session 29
Hybrid (discrete+continuous) networks CS 561, Session 29
Continuous child variables CS 561, Session 29
Continuous child variables CS 561, Session 29
Discrete variable w/ continuous parents CS 561, Session 29
Discrete variable CS 561, Session 29
Inference in belief networks • Exact inference by enumeration • Exact inference by variable elimination • Approximate inference by stochastic simulation • Approximate inference by Markov chain Monte Carlo (MCMC) CS 561, Session 29