290 likes | 303 Views
This study conducted by Margit Haberreiter from PMOD/WRC in Davos, Switzerland, delves into modeling the solar ultraviolet (UV) variability. It covers synthetic spectra, magnetic flux identification in active regions from magnetograms, and spectral variability modeling using COSI. The research also looks into temperature profiles and emission due to LTE and NLTE. Issues encountered in the calculations of spectra are discussed, along with comparisons with measurements and synthetic models. The study aims to address the daily variability of Lyman α and the annual mean spectral variability, exploring factors influencing UV variability. The future directions include refining reconstructions based on different model atmospheres and magnetic analyses.
E N D
Modelling the Solar UV variability M. Haberreiter ISSI Study Team on Solar Magnetism and Irradiance 11.-15.October 2004 Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Overview • Synthetic spectra • Reconstruction • Conclusions • What’s next Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Identification of active regions from magnetograms 1. Magnetic flux filling factor 2. Intensity contrast < 1 sunspot (umbra, penumbra) else faculae th: threshold magnetic flux 3: magnetic fluxsaturation Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Modeling spectral variability Intensity spectra calculated with COSI: • quiet sun, Model C • faculae, Model P • sunspots, Model S Magnetogram analysis: • time-dependent filling factorsfor faculae (+network) ,sunspots Variation of solar activity: Krivova & Solanki (2003) Margit Haberreiter, PMOD/WRC, Davos, Switzerland
COSI - COde for Solar Irradiance • Updated version of the spherical radiative transfer code based on Schmutz W., 1997, A&A, 321, 268 • Spectrum synthesis program SYNSPEC, based on Hubeny 1988, Hubeny & Lanz 2000 • Physics-based model • atmosphere structure (p, T) by Fontenla et al., ApJ, 1999 for quiet Sun, sunspots, faculae • spherical geometry Margit Haberreiter, PMOD/WRC, Davos, Switzerland
COSI – COde for Solar Irradiance • non-local thermodynamic equilibrium (non-LTE), important below 200 nm • non-LTE line blanketing with opacity distribution functions • Latest photoionization cross sections • C I, Mg I, Al I, Si I, Fe I (Haberreiter et al. 2002) • Opacity project (Seaton et al. 1994) • IRON project (Bautista & Pradhan 1997) Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Temperature profiles Fontenla et al. 1999, ApJ Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Emission due to LTE and rising temperature H I 4863 - LTE Margit Haberreiter, PMOD/WRC, Davos, Switzerland
H I 4863 - NLTE Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Hydrogen lines Haberreiter & Schmutz, 2003 Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Model P - plage Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Model C – quiet Sun Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Model S - sunspot Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Problems in the calculations of the spectra • Missing opacity in the UV • improvement with the new line list • Problems of the continuums opacity • Inconsistency in the • Validation of Hminus bound free and free free opacity • Validation of the line formation of some lines Margit Haberreiter, PMOD/WRC, Davos, Switzerland
COSI versus measurement Data: Burlov-Vasiljev et al. 1995 Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Synthetic spectrum versus Thuillier Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Comparison of linelists • 200 to 325 nm more lines in new line list • additional opacity Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Continuum-test Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Magnetogram Data Begin End • NSO/Kitt Peak Vacuum Telescope, Tucson • NSO/KP, 512nm 08 / 24 / 1974 04 / 07 / 1992 • NASA/NSO, 868nm 11 / 21 / 1992 12 / 22 / 2001 (05 / 18 / 1996) • MDI/SOHO 05 / 19 / 1996 04 / 17 / 2002 MDI: Michelson Doppler Imager Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Reconstruction quiet Sun Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Daily Variability of Lyman Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Spectral variability – annual mean Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Spectral variability – annual mean Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Why is the variability too low? • free parameter sat is fitted to give the best correlations to the TSI composite • Considerable effect on TSI • Effect of sat on the UV? • Different sat for different model atmospheres? Thomas Wenzler et al. 2004 Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Lyman – KP SPM Margit Haberreiter, PMOD/WRC, Davos, Switzerland
=320 nm– KP SPM Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Conclusions • The Lyman reconstruction is lower than SOLSTICE data and Wood's composite but not so bad for the SUSIM data • Reconstructed UV variability is considerably lower than the SUSIM data or the Lean reconstruction • Is the free parameter of the magnetogram analysis different for different model atmospheres? • If yes, the freeparameter has to be determined for the model atmospheres by Fontenla Margit Haberreiter, PMOD/WRC, Davos, Switzerland
What’s next • Basis for the reconstruction • OLD: Faculae, quiet Sun and sunspots • NEW: umbra and penumbra instead of a single sunspot model (Alexandra Tritschler, 2002) • Latest version of the magnetogram-analysis (Wenzler 2004a,b) • Comparison with other synthetic models and reconstructions • P. Fox, Ilaria Ermolli on the basis of PSPT images • Implement the depth dependent turbulence broadening Margit Haberreiter, PMOD/WRC, Davos, Switzerland
Thank you! Margit Haberreiter, PMOD/WRC, Davos, Switzerland