1 / 41

CATAR- 文獻內容探勘工具

CATAR- 文獻內容探勘工具. 簡介 安裝 使用 解讀 案例. 曾元顯 國立臺灣師範大學 資訊中心 2011/04/16. 文獻內容分析 - 簡介. 相關學科: Bibliometrics 、 Scientometrics 、 Infometrics Content analysis in social science 相關期刊 JASIST, Scientometrics, Journal of Infometrics 相關會議 ISSI: International Society for Scientometrics and Infometrics

keaton
Download Presentation

CATAR- 文獻內容探勘工具

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CATAR-文獻內容探勘工具 簡介 安裝 使用 解讀 案例 曾元顯 國立臺灣師範大學 資訊中心 2011/04/16

  2. 文獻內容分析-簡介 • 相關學科: • Bibliometrics、Scientometrics、Infometrics • Content analysis in social science • 相關期刊 • JASIST, Scientometrics, Journal of Infometrics • 相關會議 • ISSI: International Society for Scientometrics and Infometrics • STI: Science and Technology Indicators 2

  3. 文獻內容分析-動機 • 專利的前案分析,希望能在半天內完成 • 引自類比IC設計製造公司副總經理說法 • 鑑往知來、避開重複、促進創新 • 擷取重點、評估形勢、規劃策略 • 找出特定作者、機構 • 邀請投稿、演講、審查、合作、求助 • 科技政策分析與決策輔助 • 作者、機構、國家生產力分析 • 績效評鑑、經費分配 3

  4. 文獻內容自動分析 • 長期目標: • 自動掃描相關文獻,分析、組織、呈現 • 提供探索、線索,以供後續驗證、決策 • 相關研究 • Structured Abstract in library science (1987) • Automated structured abstract in biology (2007) • 專利文獻自動分析 (2004, NTCIR) • 科教領域 • 研究文獻中的情緒語意分析(2010, STI) 4

  5. 文獻內容自動分析-工具現況 • CiteSpace • 陳超美,Drexel University (2003) • http://cluster.cis.drexel.edu/~cchen/citespace/ • 擷取科學論文中自然呈現的聚類 • 顯示典範移轉中的轉折點-類別間的橋樑 • VOSviewer • Nees Jan van Eck and Ludo Waltman (2007) • CWTS of Leiden University • http://www.vosviewer.com/ • CATAR 5

  6. CATAR簡介 • Content Analysis Toolkit for Academic Research • 曾元顯, 2004-2011 • http://web.ntnu.edu.tw/~samtseng/CATAR/ • CATAR技術細節: • 曾元顯、林瑜一(2011)。 內容探勘技術在教育評鑑研究發展趨勢分析之應用。教育科學研究期刊,56(1),129-166。 • Yuen-Hsien Tseng, Chi-Jen Lin, and Yu-I Lin, "Text Mining Techniques for Patent Analysis", Information Processing and Management, Vol. 43, No. 5, 2007, pp. 1216-1247. (cited 23 times in WoK, 38 times in Scopus, 58 times in Google Scholar) 6

  7. CATAR分析功能 • 概觀分析(overview) • 主題歸類分析(clustering) • 書目對分析(bibliographic coupling) • 共現字分析(co-word analysis) 7

  8. CATAR安裝 • 安裝Perl • http://strawberryperl.com/, at least Version 5.12.0 • 下載CATAR • http://web.ntnu.edu.tw/~samtseng/CATAR/ • 解壓縮到C:\,以便產生C:\CATAR目錄 • C:\CATAR\bin\:程式放置處,命令由此目錄下達 • C:\CATAR\doc\:執行過程資料放置處 • C:\CATAR\Result\:執行結果資料放置處 • C:\CATAR\Source\Data\:待分析資料放置處 8

  9. 待分析資料的準備 • 待分析資料的界定(最重要的步驟、第二有價值的部分) • 關鍵詞搜尋的結果 • 核心期刊的論文 • 綜合查詢的結果(期刊+關鍵詞+年代限制) • 一篇篇專家確認過的文獻 • WoK資料的搜尋 • 搜尋技巧 • 以etch為例 9

  10. FN ISI Export Format VR 1.0 PT J AUTseng, SC Tsai, CC AF Tseng, Sheng-Chau Tsai, Chin-Chung TIOn-line peer assessment and the role of the peer feedback: A study of high school computer course SOCOMPUTERS & EDUCATION LA English DT Article DEinteractive learning environments; secondary education; learning communities; improving classroom teaching; peer assessment IDWORLD-WIDE-WEB; ASSESSMENT SYSTEM; HIGHER-EDUCATION; STUDENTS; THINKING; SCIENCE; SELF ABThe purposes of this study were to explore the effects and the validity of on-line peer assessment in high schools and … C1Natl Chiao Tung Univ, Inst Educ, Hsinchu 300, Taiwan. Natl Chiao Tung Univ, Ctr Teacher Educ, Hsinchu 300, Taiwan. RP Tsai, CC, Natl Chiao Tung Univ, Inst Educ, 1001 Ta Hsueh Rd, Hsinchu 300, Taiwan. EM cctsai@mail.nctu.edu.tw CRROTH WM, 1997, SCI EDUC, V6, P373 DOCHY F, 1999, STUD HIGH EDUC, V24, P331 … NR23 TC2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1315 J9COMPUT EDUC JI Comput. Educ. PD DEC PY2007 VL49 IS 4 BP1161 EP 1174 DI 10.1016/j.compedu.2006.01.007 PG 14 SCComputer Science, Interdisciplinary Applications; Education & Educational Research GA 218OF UTISI:000250024100013 ER ISI WoK Publication Record Only the fields in red color are used. Cited References are used in the bibliographic coupling for topic clustering and citation tracking

  11. WoK的13個欄位 AU:作者欄,例:Kainz, H; Hofstetter, H TI:論文標題,例:Adaption of the main waste water treatment plant … SO:期刊全名,例:WATER SCIENCE AND TECHNOLOGY。 DE:作者給定的關鍵詞,例:large wastewater treatment plant;。 ID:論文描述詞,例:WATER; CONTAMINATION; PLANT;。 AB:論文摘要,約100-300個英文字。 C1:作者所屬機構之國家。 CR:參考文獻, 例:BALDI F, 1988, WATER AIR SOIL POLL, V38, P111 NR:參考文獻篇數,例:3。 TC:被引用的次數,例:1。 PY:論文出版年,例:1996。 SC:論文所屬領域別,例:Environmental Sciences; Water Resources UT:Web of Science 之論文主鍵欄,例:ISI:A1996VF74600009

  12. 概觀分析 • 將資料解剖,置於資料庫內,以便於管理 • 從資料庫中,讀取各欄位,進行交叉統計 • 趨勢分析 • 年代篇數序列的線性回歸線斜率作為趨勢指標 • Yuen-Hsien Tseng, Yu-I Lin, Yi-Yang Lee, Wen-Chi Hung, and Chun-Hsiang Lee, " A Comparison of Methods for Detecting Hot Topics", Scientometrics, Vol. 81, No. 1, Oct. 2009, pp. 73-90. • 執行命令(範例): • C:\CATAR\bin>parl CATAR.par automc.pl -OOASE ..\Source_Data\SE\data 命令選項 分析結果之目錄名稱 待分析資料之路徑名稱 12

  13. 命令提示字元(DOS)命令 • 開啟命令提示字元 • 開始->所有程式->附屬應用程式->命令提示字元 • 變換到磁碟機C:C: • 變換目錄到CATAR:cd \CATAR • 變換到上一層目錄:cd .. • 絕對路徑:C:\CATAR\Source_Data\SE\data • 相對路徑:若已經在目錄\CATAR\bin下,則為 ..\Source_Data\SE\data 13

  14. 概觀分析範例 • 結果參考:C:\CATAR\Result\SE\SE_by_field.xls Document Type=(Article)Databases=SCI-EXPANDED, SSCI, A&HCI Timespan=2005-2009 14

  15. Year Production: Top 8 Countries

  16. Most Productive Authors: Top 10 AUTseng, SC Tsai, CC Tseng, SC : 1 Tsai, CC : 1 AUTseng, SC Tsai, CC Tseng, SC : 0.5 Tsai, CC : 0.5 NC=Normal Count: each co-author is counted as a single author FC=Fractional Count: all the co-authors are counted as a single author IF=TC/NC,FIF=FTC/FC

  17. Most Productive Institutes: Top 15 Data are from the C1 field of each record: C1Natl Chiao Tung Univ, Inst Educ, Hsinchu 300, Taiwan

  18. Most Cited References Data are from the CR field of each record: CRROTH WM, 1997, SCI EDUC, V6, P373

  19. Most Cited Authors Data are from the CR field of each record: CRROTH WM, 1997, SCI EDUC, V6, P373

  20. Most Cited Journals Data are from the CR field of each record: CRROTH WM, 1997, SCI EDUC, V6, P373

  21. 主題歸類分析 • 索引建立 • 相似度計算 • 文件歸類 - 建立主題樹 • 類別標題詞擷取 • 多階段歸類 - 建立高階主題樹 • 多維縮放(MDS)- 建立主題地圖 • 主題與各項資料的交叉分析 21

  22. 索引建立 • 書目對分析: • 建立書目對強度矩陣 • 計數並正規化引用次數 • 共現字(與任何文字)分析: • 刪除停用詞(the、of、for、on、and, at, …) • 正規化詞彙(消除單複數、被動、進行式的差異) • 擷取關鍵片語(已專利之技術[Tseng, 2002, JASIST]) • 建立詞彙到文件的反向索引資訊檔案

  23. D1 D1 D2 D2 Dn Dn D1 D1 詞彙 T 文獻 M D2 D2 Dn Dn 詞彙 2 文獻 2 詞彙 1 文獻 1 文 件 A 文 件 B 文 件 A 文 件 B 共現字 相似性 書目對 相似性 相似度之計算 T=2529 for 318 EEPA papers M=9957 for 318 EEPA papers Sim(A, B) = 2x|S(A)∩S(B)| -------------------- |S(A)|+|S(B)|

  24. 主題樹 • 根據相似度(距離)矩陣,進行凝聚階層歸類agglomerative hierarchical clustering (AHC) • Complete link criterion • Dendrogram主題樹 0.0 門檻:0.075 結果:6類 0.1 0.2 0.3 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 24

  25. 主題樹範例 (電影新聞資料) 相似度 • 1(7):161 : 7 Docs. : 0.3478 (美國: 9.4) • 2 : 4 Docs. : 1.0000 (美國: 4.1) • 13 : 101765 : 2006-01-01:納尼亞傳奇 美國片 • 55 : 113371 : 2006-03-19:V怪客 美國片 • 48 : 109839 : 2006-03-12:北國性騷擾 美國片 • 1 : 98663 : 2006-01-08:惡狼ID 美國片 • 32 : 3 Docs. : 0.7245 (影迷: 7.0, 美國: 2.4) • 14 : 2 Docs. : 0.9340 (影迷: 4.0, 絕命終結站: 3.5, 絕命: 3.5, 飛車: 2.8, 雲霄飛車: 2.8) • 11 : 101543 : 2006-01-15:奪魂鋸2美國片 • 27 : 104778 : 2006-02-26:絕命終結站3雲霄飛車驚魂 • 16 : 102575 : 2006-01-08:偷穿高跟鞋 美國片 • 9(3):28 : 3 Docs. : 0.7614 (傑克: 10.0, 李安: 8.9, 傑克基倫霍: 7.0, 基倫霍: 7.0, 希斯萊傑: 3.2) • 17 : 2 Docs. : 0.9141 (李安: 11.0, 傑克: 5.7, 斷背山: 4.9, 希斯萊傑: 4.0, 傑克基倫霍: 3.2) • 3 : 98770 : 2006-01-22:李安靠 斷背山重拾熱情 • 7 : 100886 : 2006-01-22:斷背山 美國片 • 21 : 104156 : 2006-02-26:鍋蓋頭 美國片 • 12(3):74 : 3 Docs. : 0.5263 (奶油: 7.3, 絕配: 6.0, 料理: 5.1, 凱特: 4.9, 尼克: 3.2) • 58 : 2 Docs. : 0.6041 (番紅花: 6.3, 凱特: 6.0, 番紅花醬汁: 4.9, 尼克: 4.0, 鮮奶: 4.0) • 68 : 397612 : 2007-08-25:料理絕配 跟著男主角做義國菜 • 71 : 403973 : 2007-08-25:料理絕配 跟著女主角做法國菜 • 69 : 398615 : 2007-08-25:料理絕配 看電影學用餐禮儀 類別序號與篇數 類別標題詞 類別編號 (下一階使用)與篇數 25

  26. 類別標題詞自動擷取 • 歸類後,自動擷取類別特徵詞,作為類別標題 • 結合「相關係數」及「詞頻」排序詞彙,可獲顯著成效 Yuen-Hsien Tseng, " Generic Title Labeling for Clustered Documents", Expert Systems With Applications, Vol. 37, No. 3, 15 March 2010, pp. 2247-2254 .

  27. 多階段歸類示意圖 每一階段 均為 獨立的 凝聚階層歸類(AHC) Topics 第二階段 Concepts 第一階段 Docs. Outliers:低於門檻,無法歸入類別者

  28. 2. Electronics and Semi-conductors 5. Material 1.Chemistry 4. Communication and computers 3. Generality 6. Biomedicine 主題地圖 • MDS(Multi-Dimensional Scaling,多維縮放) • 將n個物件,總共n(n-1)/2個相似度關係,投影到2或3維空間上,以便於視覺化其關係 NSC美國專利文獻主題地圖

  29. 主題樹與主題地圖 Carbon Nanotube專利文獻分析

  30. 書目對分析 • 執行命令(範例): • C:\CATAR\bin>parl CATAR.par automc.pl -OBCSE ..\Source_Data\SE\SE.mdb • 結果: • C:\CATAR\Result\SE_BC • *.html:主題樹 • *all*.html:主題樹以及各項資料之交叉分析 • *.xls:各主題與各項資料之交叉分析 • *titles*.html:每個主題包含之篇名 30

  31. 共現字分析 • 執行命令(範例): • C:\CATAR\bin>parl CATAR.par automc.pl-OCWSE ..\Source_Data\SE\SE.mdb • 結果: • C:\CATAR\Result\SE_CW • *.html:主題樹 • *all*.html:主題樹以及各項資料之交叉分析 • *.xls:各主題與各項資料之交叉分析 • *titles*.html:每個主題包含之篇名 31

  32. 分析範例-曾元顯著作-書目對 門檻=0.0 合理度:100% • 1(6): 34 : 6 Docs. : 0.020000 (cluster: 5.1, map: 3.0, min: 3.0, text: 2.1) • 12 : 4 Docs. : 0.142857 (cluster: 7.0, patent: 5.2, text: 3.7, generic: 2.6, title: 2.6) • 5 : 3 Docs. : 0.224490 (cluster: 5.0, generic: 3.1, title: 3.1, text: 2.4, document: 2.3) • 1 : 2 Docs. : 0.692308 (generic: 4.0, title: 4.0, cluster: 3.2, document: 3.1, correlation coefficient: 2.0) • 2 : ISI:000241690200012 : 2006:Toward generic title generation for clustered documents6 : ISI:000272846500049 : 2010:Generic title labeling for clustered documents • 3 : ISI:000246869800006 : 2007:Text mining techniques for patent analysis • 4 : ISI:000251991600006 : 2007:Patent surrogate extraction and evaluation in the context of patent mapping • 18 : 2 Docs. : 0.052632 (education: 4.0, content analysi: 2.0, content: 2.0, media: 2.0) • 7 : ISI:000277110400017 : 2010:Mining concept maps from news stories for measuring civic scientific literacy in media • 8 : ISI:000279714800001 : 2010:Trends of Science Education Research: An Automatic Content Analysis • 2(3): 15 : 3 Docs. : 0.095238 (neural network: 3.1, quadratic: 2.3, sort: 2.3, perceptron: 1.7) • 2 : 2 Docs. : 0.333333 (quadratic: 3.0, sort: 3.0, perceptron: 2.3, winner-take-all: 1.4, constant-time: 1.4) • 13 : ISI:A1995QT09700011 : 1995:ON A CONSTANT-TIME, LOW-COMPLEXITY WINNER-TAKE-ALL NEURAL-NETWORK • 9 : ISI:A1992HU15600007 : 1992:SOLVING SORTING AND RELATED PROBLEMS BY QUADRATIC PERCEPTRONS • 10 : ISI:A1992HY58100028 : 1992:CONSTRUCTING ASSOCIATIVE MEMORIES USING HIGH-ORDER NEURAL NETWORKS • 3(2): 14 : 2 Docs. : 0.113208 (automatic: 3.1, chinese: 1.4, text: 1.4, thesauru: 1.4) • 0 : ISI:000167255500002 : 2001:Automatic cataloguing and searching for retrospective data by use of OCR text • 1 : ISI:000178776600007 : 2002:Automatic thesaurus generation for Chinese documents • 4(2): 3 : 2 Docs. : 0.285714 (code: 4.0, decoder: 1.4, fast: 1.4, reed-muller: 1.4) • 11 : ISI:A1993MA58300001 : 1993:DECODING REED-MULLER CODES BY MULTILAYER PERCEPTRONS • 12 : ISI:A1993MA58300002 : 1993:FAST NEURAL DECODERS FOR SOME CYCLIC CODES • 5(1): 36 : 1 Docs. : 0 (hot: 2.0, detect: 2.0, comparison: 2.0, topic: 1.1, scientometric: 0.7) • 5 : ISI:000270841800006 : 2009:A comparison of methods for detecting hot topics 32

  33. 分析範例-曾元顯著作-書目對(第二階) 門檻=0.0 合理度:100% • 1(2):1 : 5 Docs. : 0.100000 (neural: 4.0, perceptron: 3.0, code: 2.4, decoder: 1.8, network: 1.8) • 1 : 15 : 3 Docs. : 0.095238(neural network: 3.1, quadratic: 2.3, sort: 2.3, perceptron: 1.7) • 3 : 3 : 2 Docs. : 0.285714(code: 4.0, decoder: 1.4, fast: 1.4, reed-muller: 1.4) • 2(2):2 : 8 Docs. : 0.022556 (automatic: 5.0, document: 4.0, text: 4.0, generation: 3.0, cluster: 1.8) • 0 : 34 : 6 Docs. : 0.020000(cluster: 5.1, map: 3.0, min: 3.0, text: 2.1) • 2 : 14 : 2 Docs. : 0.113208(automatic: 3.1, chinese: 1.4, text: 1.4, thesauru: 1.4) • 3(1):4 : 1 Docs. : 0 (hot: 2.0, detect: 2.0, comparison: 2.0, topic: 2.0, scientometric: 1.0) • 4 : 36 : 1 Docs. : 0(hot: 2.0, detect: 2.0, comparison: 2.0, topic: 1.1, scientometric: 0.7) 第一階的類別編號 與篇數 33

  34. 分析範例-曾元顯著作-書目對(第二階) 34

  35. 分析範例-曾元顯著作-共現字 合理度:60%-80% • 1(5):29 : 5 Docs. : 0.0940 (term: 19.0, document: 6.7, algorithm: 4.0) • 7 : 3 Docs. : 0.5403 (document: 12.2, generic: 7.7, cluster: 7.6, term: 7.4, algorithm: 6.0) • 2 : 2 Docs. : 0.9610 (cluster: 10.8, generic: 10.0, label: 7.0, title: 7.0, document: 5.6) • 2 : ISI:000272846500049 : 2010:Generic title labeling for clustered documents • 6 : ISI:000241690200012 : 2006:Toward generic title generation for clustered documents • 7 : ISI:000178776600007 : 2002:Automatic thesaurus generation for Chinese documents • 3 : 2 Docs. : 0.7090 (map: 7.7, patent: 5.4, term: 4.1, scientific: 4.0, new: 4.0) • 1 : ISI:000277110400017 : 2010:Mining concept maps from news stories for measuring civic scientific literacy in media • 4 : ISI:000251991600006 : 2007:Patent surrogate extraction and evaluation in the context of patent mapping • 2(3):19 : 3 Docs. : 0.2776 (automatic: 7.3, text: 6.9, analysi: 4.9, approach: 4.6, topic: 1.9) • 4 : 2 Docs. : 0.6881 (science: 7.4, analysi: 6.9, education: 5.4, science education: 5.4, research: 5.4) • 0 : ISI:000279714800001 : 2010:Trends of Science Education Research: An Automatic Content Analysis • 5 : ISI:000246869800006 : 2007:Text mining techniques for patent analysis • 8 : ISI:000167255500002 : 2001:Automatic cataloguing and searching for retrospective data by use of OCR text • 3(2):1 : 2 Docs. : 1.00 (network: 7.7, memory: 4.0, associative memory: 2.7, winner-take-all: 2.0) • 12 : ISI:A1992HY58100028 : 1992:CONSTRUCTING ASSOCIATIVE MEMORIES USING HIGH-ORDER NEURAL NETWORKS • 9 : ISI:A1995QT09700011 : 1995:ON A CONSTANT-TIME, LOW-COMPLEXITY WINNER-TAKE-ALL NEURAL-NETWORK • 4(1):30 : 1 Docs. : 0 (trend: 6.7, different: 5.0, better: 3.0, trend observation: 3.0, choice: 3.0) • 3 : ISI:000270841800006 : 2009:A comparison of methods for detecting hot topics 有共同的Map或Mapping之詞彙與概念,但其他概念則不相同 35

  36. 主題趨勢分析 • 列出主題之年代篇數序列 • 計算其線性回歸線的斜率 • 按此斜率排序主題,可分析 • 趨勢漸增之主題 • 趨勢漸減之主題

  37. Breakdown Trends of ICTin Edu. Main stream topic Dying out topics Hot topics during that period Topic with periodic attraction Promising topics (not yet mature)

  38. 解讀 • 最有價值的部分 • Access 檔案 • 可人工修改,再進行書目對與共現字之分析 • Excel 檔案:各種交叉分析結果,可作圖 • HTML 檔案:主題樹、篇名與交叉分析結果 • 主題地圖檔案 • 第n階的文件,其主題地圖在第n階的結果裡,而其中的顏色,代表各個文件所屬的類別 • 第n階的類別,其主題地圖在第n+1階的結果裡 38

  39. 解讀 • 多用不同參數、方式探索 • 解讀出有意義的資訊為準 • 有意義的資訊,可能散落在不同參數所產生的結果中 • 每一種參數、方式,都有可解讀之處,越多者,越佳 • 配合領域專家、有經驗者(科學計量專家)一起解讀 • 參考: • 陳超美(2010)。如何選取CiteSpace的參數。http://www.sciencenet.cn/m/user_content.aspx?id=378974 39

  40. 分析案例 • 曾元顯、林瑜一(2011)。 內容探勘技術在教育評鑑研究發展趨勢分析之應用。教育科學研究期刊,56(1),1-38。 • Yueh-Hsia Chang, Chun-Yen Chang, and Yuen-Hsien Tseng, "Trends of Science Education Research: An Automatic Content Analysis", Journal of Science Education and Technology, Vol. 19, No. 4, 2010, pp. 315-331. 40

  41. 注意事項 • 先從概觀分析開始 • 才能將WoK資料剖析到資料庫中 • 其後才能進行書目對與共現字分析 • 非WoK資料之分析 • 參考: • C:\CATAR\Source_Data\movie\movie.mdb • C:\CATAR\Source_Data\eport\eport.mdb (感謝本校資訊中心汪耀華組長整理資料) • 將自己的資料,依照上述檔案範例放入資料庫中,若無CR欄位則直接進行共現字分析 • 若某欄位要置放多個項目,則每個項目之間以「; 」隔開,如「Chang, YH; Chang, CY; Tseng, YH」 • 將WoK的SC對應到自己定義的類別 • 編輯:C:\CATAR\bin\ISI_SC2C.txt • 如果沒有此項需求,可以不用理會這一點 41

More Related