1 / 21

L’Hydrologie Continentale vu par T/P, ERS, GRACE, …

L’Hydrologie Continentale vu par T/P, ERS, GRACE, …. (LEGOS/GOHS). Applications de l’Observation Spatiale à l’Hydrologie Continentale. Bassin Amazonien. Couverture de Topex/Jason (rouge) et ERS/Envisat (noir).  stations hydrographiques in situ. Station Virtuelle.

keaton
Download Presentation

L’Hydrologie Continentale vu par T/P, ERS, GRACE, …

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. L’Hydrologie Continentalevu par T/P, ERS, GRACE, … (LEGOS/GOHS)

  2. Applications de l’Observation Spatiale à l’Hydrologie Continentale

  3. Bassin Amazonien Couverture de Topex/Jason (rouge) et ERS/Envisat (noir)  stations hydrographiques in situ

  4. Station Virtuelle Mesure alti à 1/10 sec • cycle 11 • cycle 12 • cycle 13 Trace du satellite FLEUVE Série temporelle de hauteurs d’eau 2002 1993

  5. Rio Negro (Bassin de l’Amazone) --------------------------------------------------- Série temporelle de hauteurs d’eau à partir des données Topex/Poseidon --------------------------------------------------- 2002 1993

  6. AMAZONE Débit (m3/s) Topex In situ différences

  7. Lac Balbina (Amazonie) Hauteurs d’eau d’après Topex/Poseidon

  8. Topex 1 BASSIN DU MEKONG 3 2 Plaine d’inondation 3 m

  9. Réseaux hydrographiques in situ GRDC GRDC : Global Runoff Data Center

  10. INVERSION OF GRACE GEOIDS FOR LAND HYDROLOGY C. Reigber, R. Schmidt (GFZ, Potsdam) G. Ramillien, A. Cazenave (LEGOS, Toulouse)

  11. Global Models : Atmosphere : ECMWF(79-93), NCEP(79-96) Oceans : POCM(79-97),ORCA(92-99), MIT(85-96), ECCO assimilation (1993 -…) Soil moisture & Snow cover : LaD(81-98),GSWP(87-88),Huang(79-98) Observed monthly mean variations of the geoid A priori uncertainties of Models and GRACE obs. Inversion for « De-correlation » (Generalized least-squares matrix solving) STEP 1 Maps of geoid anomaly for each hydrological contribution Atmosphere Oceans Soil moisture Snow cover Predictive filtering of the spherical coefficients + compensation (elastic Earth’s response to surface loads) STEP 2 Distribution of surface water masses

  12. GRACE geoids : time span

  13. GRACE geoids (GFZ) April 2002 May 2002 November 2002

  14. May-Nov. (seasonal cycle); Models Total land water (soil water + snow) LaD GSWP

  15. May 2002-Nov.2002 (seasonal cycle) Total land water (soil water + snow) Lad(1rst guess) GSWP (1rst guess)

  16. May02-Nov02 (seasonal cycle) GRACE geoids from CSR Total land water (soil water + snow)

  17. Seasonal cycle of total land waters (April+May) 2002 minus November 2002 GFZ geoids Same solution whatever the first guess

  18. Residuals : GRACE(GFZ) minus solution; seasonal cycle LaD as 1rst guess GSWP as 1rst guess

  19. Demande Budgétaire 2004

  20. : solution vector formed by the list of all spherical harmonic coefficients to be solved • : vector formed with GRACE-derived geoid coefficients • : vector formed by the list of all spherical harmonic coefficients of the ‘first guess’ • : matrix composed of 4 diagonal blocks for separating the 4 reservoirs contributions • : covariance matrices of the ‘a priori’ GRACE errors and a priori model uncertainties • : covariance matrix which describes the statistical properties of the water mass variations in the ‘k-th’ reservoir The solution is computed by solving the linear equation: )

More Related