190 likes | 361 Views
Introduction to Scientific Computing II. Conjugate Gradients. Dr. Miriam Mehl. Steepest Descent – Basic Idea. solution of SLE minimization iterative one-dimensional minima direction of steepest descent?. Steepest Descent – Algorithm. Steepest Descent – Algorithm II.
E N D
Introduction to Scientific Computing II Conjugate Gradients Dr. Miriam Mehl
Steepest Descent – Basic Idea • solution of SLE • minimization • iterative • one-dimensional minima • direction of steepest descent?
Steepest Descent – Example initial error after 1 iteration after 10 iterations
Steepest Descent – Example h iterations 1/16 646 1/32 2,744 1/64 11,576 1/128 48,629
Steepest Descent – Convergence • Poisson with 5-point-stencil • like Jacobi
Conjugate Gradients – Basic Idea • solution of SLE • minimization • iterative • one-dimensional minima • no repeating search directions
Steepest Descent – Example initial error after 1 iteration after 10 iterations
Conjugate Gradients – Example initial error after 1 iteration after 10 iterations
Conjugate Gradients – Example h iterations sd iterations cg #unknowns 1/16 646 35 225 1/32 2,744 76 961 1/64 11,576 157 3,969 1/128 48,629 322 16,129
CG – Convergence • Poisson with 5-point-stencil • like SOR • no parameter adjustment
PCG – Idea convergence rate cg: • Solve system M-1Ax=M-1b • better condition number k • M-1 easy to apply