250 likes | 421 Views
Life style influence on trace element content in mushrooms sporocarps . J uan A. Campos and Rosario García-Moreno. 1 km 2. ELEMENTAL QUANTITATIVE AND QUALITATIVE ANALYSIS BY X RAY FLUORESCENCE. Philips-PW2404 Panalytical Magic -Pro Model. L D L= 0.5 ppm
E N D
Life style influence on trace element content in mushrooms sporocarps. Juan A. Campos and Rosario García-Moreno
ELEMENTAL QUANTITATIVE AND QUALITATIVE ANALYSIS BY X RAY FLUORESCENCE Philips-PW2404 PanalyticalMagic-Pro Model L D L= 0.5 ppm Error= <2% in repetitivemeasurements
PREVIOUS LITERATURE Campos and Tejera, 2011. Biological Trace ElementsResearch
Hypothesis Thedifferences in theoccurrence of trace elements in fungibiomassmayreflectsthedifferentecologicalniches in wichtheylive and hencetheirrelationwiththeinorganicsubstrate.
ECTOMYCORRHIZAL SAPROBES EPIPHYTES
All data given in thiswork are in ppm dm (mg.kg-1drymatterbasis)
DENDROGRAM OF CLUSTER ANALYSIS (Nearestneighbor) Amanita phalloides Hebeloma sinapizans Agrocybeaegerita Lepista nuda Lepista inversa Entolomalividum Armillariamellea Hericiumerinaceum Gymnopilusspectabilis Macrolepiota procera Lactariuszugazae Russuladelica Lycoperdonperlatum Meripilusgiganteus Clitocybemaxima Inonotushispidus Paxillusinvolutus Suillusbellini
COMPARISON BETWEEN SPECIES (All trace elements) ANOVA F ratio = 1 P = 0.929 > 0.05 LDS= 15 Averagecontent
COMPARISON BETWEEN LIFE STYLES (All trace elements) ANOVA F ratio = 2 P value = 0.11 >0.05 LDS= 6 Averagecontent Ectomycorrhizas Saprobes Epiphytes
COMPARISON BETWEEN ELEMENTS (Allspecies) ANOVA F. ratio = 21 P. value = 0.00 <0.05 LDS= 11 Zn Rb Averagecontent Cu Ba ELEMENTS
COMPARISON BETWEEN DIFFERENT ELEMENTS FOR THE DIFFERENT HABITATS Means and 95.0 Percent LSD Intervals ANOVA F ratio = 10 P value = 0.00 < 0.05 LDS= 17 Cu Zn Rb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ELEMENTS
Cu COMPARISON BETWEEN DIFFERENT ELEMENTS FOR THE DIFFERENT HABITATS Saprobes ANOVA F ratio = 10 P value = 0.00 < 0.05 LDS= 17 Epiphytes Ectomycorrhizas Rb Zn Saprobes Ectomycorrhizas Ectomycorrhizas Epiphytes Saprobes Epiphytes
SummaryStatisticsfor Cu Count 18 Average 26 Standard deviation 23 Coeff. of variation 91 % Minimum 4 Maximum 93 Range 89 Stnd.skewness3 > 2 Stnd.Kurtosis 3 Normalityrejected Density curve Cu
OutliersIdentificationfor Cu 2.8 StdDev. fromthe mean Clitocybemaxima
SummaryStatisticsfor Zn Count 18 Average 61 Standard deviation 30 Coeff. of variation 50 % Minimum 15 Maximum 122 Range 107 Stnd.skewness1< 2 Stnd.Kurtosis -1 Normalityassumed Density Curve Zn
OutliersIdentificationfor Zn No statisticallysupportedoutliers
SummaryStatisticsfor Rb Count 18 Average 52 Standard deviation 55 Coeff. of variation 105 % Minimum 12 Maximum 221 Range 209 Stnd.Skewness4> 2 Stnd.kurtosis 4 Normalityrejected Density Curve Rb
OutliersIdentificationfor Rb 3 StdDev. fromthe mean Suillusbellini
CONCLUSIONS • Cu, Zn and Rb are the trace elements that showed significant differences among the different life styles • - Cu and Zn are more accumulated in saprobes species whereas Rb is more accumulated in ectomycorrhizal species. • Clitocybe maxima has been indentified statistically as an outlier for Cu with a great accumulation for this element. • - Suillusbellinihas been identified statistically as an outlier for Rb with a great accumulation for this element.
SummaryStatistics Cu Zn Rb Count 18 18 18 Average 26 61 52 Std. Dev. 23 30 55 Minimum 4 15 12 Maximum 93 122 221 Stnd. skewness 3 1 4 Stnd.kurtosis3 -1 4 Cu Zn Rb
Principal ComponentsAnalysis ComponentPercent of Cumulative NumberEigenvalueVariancePercentage 1 4.65206 31.014 31.014 2 2.34851 15.657 46.670 3 2.02472 13.498 60.169 4 1.55439 10.363 70.531 5 1.34333 8.956 79.487 6 0.881901 5.879 85.366 7 0.642421 4.283 89.649 8 0.538375 3.589 93.238 9 0.338782 2.259 95.497 10 0.315961 2.106 97.603 11 0.138092 0.921 98.524 12 0.118449 0.790 99.313 13 0.0762198 0.508 99.821 14 0.0135909 0.091 99.912 15 0.0132027 0.088 100.000 TheStatAdvisor This procedure performs a principal components analysis. The purpose of the analysis is to obtain a small number of linear combinations of the 15 variables which account for most of the variability in the data. In this case, 5 components have been extracted, since 5 components had eigenvalues greater than or equal to 1.0. Together they account for 79.4867% of the variability in the original data.