1 / 39

Introduction

Introduction. Yongsik Lee. Classification of Analytical Methods. Classical methods Instrumental methods. Instrumental Methods. Photon Charge Heat Radioactive. Instruments. Data domain Non-electrical domain Electrical domain Analog Time digital. Detectors. Detectors

keefe
Download Presentation

Introduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction Yongsik Lee

  2. Classification of Analytical Methods • Classical methods • Instrumental methods

  3. Instrumental Methods • Photon • Charge • Heat • Radioactive

  4. Instruments • Data domain • Non-electrical domain • Electrical domain • Analog • Time • digital

  5. Detectors • Detectors • 물리량의 변화를 기록 또는 표시 • 기계적, 전기적, 화학적 장치 • Transducers • 비전기적 영역 정보와 전기적 영역 정보 사이 변환 • 변환 함수 = 둘 사이의 수학적 관계식 • Sensors • 특정 화학종을 연속적으로, 가역적으로 검출하는 분석장치

  6. Other Components of Instrument • Readout device • Microprocessor • Computer

  7. Selecting a method • Defining the problem • 요구되는 정확도 • 이용할 수 있는 시료의 양 • 분석물의 농도 범위 • 방해 성분 • 시료 매트릭스의 물리적, 화학적 성질 • 시료의 개수 • 신속성 • 실험자의 숙련도 • 기기 장치의 가격과 이용 가능성 • 시료당 비용

  8. Characteristics of Instrument • Precision • Bias • Sensitivity • Detection limit • Concentration range • selectivity

  9. Precision • 정밀도 • Measure of random, or indeterminate error • 재현성 reproducibility • 표준편차, 변동계수 등 • 표 1-5 성능 계수 (figure of merit)

  10. Bias • 고정 오차 • Measure of systematic or determinate error • Definition • Bias = (population mean) – (true value)

  11. Sensitivity • Definition • Measure of its ability to discriminate between small differences in analyte concentration • Tow factors • Slope of calibration curve - steeper slope • Precision – better precision

  12. Classification of Analytical Methods • Qualitative instrumental analysis • measured property indicates presence of analyte in matrix • Quantitative instrumental analysis • magnitude of measured property is proportional to concentration of analyte in matrix

  13. Classical • Qualitative - identification by color, indicators, boiling points, odors • Quantitative - mass or volume • e.g. gravimetric, volumetric • Instrumental • Qualitative - chromatography, electrophoresis and identification by measuring physical property • e.g. spectroscopy, electrode potential • Quantitative • measuring property and determining relationship to concentration • e.g. spectrophotometry, mass spectrometry • Often, same instrumental method used for qualitative and quantitative analysis

  14. Types of Instrumental Methods: • Radiation emission • Emission spectroscopy - fluorescence, phosphorescence, luminescence • Radiation absorption • Absorption spectroscopy - spectrophotometry, photometry, nuclear magnetic resonance, electron spin resonance • Radiation scattering • Turbidity, Raman • Radiation refraction • Refractometry, interferometry • Radiation diffraction X-ray, electron

  15. Radiation rotation • Polarimetry, circular dichroism • Electrical potential • Potentiometry • Electrical charge • Coulometry • Electrical current • Voltammetry - amperometry, polarography • Electrical resistance • Conductometry

  16. Mass • Gravimetry • Mass-to-charge ratio • Mass spectrometry • Rate of reaction • Stopped flow, flow injection analysis • Thermal • Thermal gravimetry, calorimetry • Radioactivity • Activation, isotope dilution • (Often combined with chromatographic or electrophoretic methods)

  17. Example: Spectrophotometry • Instrument: spectrophotometer • Stimulus: monochromatic light energy • Analytical response: light absorption • Transducer: photocell • Data: electrical current • Data processor: current meter • Readout: meter scale

  18. Data Domains • way of encoding analytical response in electrical or non-electrical signals • 정보를 코드화하는 여러 방법들을 영역(도메인)이라고 한다 • Interdomain conversions transform information from one domain to another. • Light Intensity => Photocell Current => Current Meter Scale • Detector (general): device that indicates change in environment • Transducer (specific): device that converts non-electrical to electrical data • Sensor (specific): device that converts chemical to electrical data

  19. Non-Electrical Domains • Physical (light intensity, color) • Chemical (pH) • Scale Position (length) • Number (objects)

  20. Electrical Domains • Current • Voltage • Charge • Frequency • Pulse width • Phase • Count • Serial • Parallel

  21. Time Domains • 정보는 신호의 크기로서 보다는 시간에 따른 신호의 요동으로 시간 영역에 저장된다. • Time • vary with time • frequency, phase, pulse width • Analog • continuously variable magnitude • current, voltage, charge • Digital • discrete values • count, serial, parallel, number

  22. Digital Binary Data • Advantages • easy to store • not susceptible to noise

  23. Figures of Merit • Performance Characteristics: • How to choose an analytical method? • How good is measurement? • How reproducible? - Precision • How close to true value? - Accuracy/Bias • How small a difference can be measured? - Sensitivity • What range of amounts? - Dynamic Range • How much interference? - Selectivity

  24. Precision • Indeterminate or random errors • Absolute standard deviation • 절대표준편차 • Variance 분산 : s2 • Relative standard deviation: • 상대 표준편차 • RSD = s/<x> • Standard deviation of mean: • 평균의 표준편차 • sm

  25. Accuracy • Determinate errors (operator, method, instrumental) • Bias: • bias = <x> - x(true) • Sensitivity • Calibration sensitivity: S • larger slope of calibration curve means more sensitive measurement

  26. Analytical Sensitivity • Mandel and Stiehler • 분석감도 = 검정곡선기울기/측정표준편차 • 기기의 증폭률을 증가시키면 검정곡선 기울기는 증가하지만, 일반적으로 측정 표준편차도 같이 증가하므로 분석감도는 일정하다.

  27. Detection Limit • Signal must be bigger than random noise of blank • Minimum signal: • Signal min = Average Signal of blank + ks(blank) • From statistics k=3 or more • (at 95% confidence level) • Suggested by Long and Winefordner

  28. Dynamic Range • At detection limit we can say confidently analyte is present but cannot perform reliable quantitation • Level(Limit) of quantitation (LOQ): (k=10)s(blank) • 정량적 측정을 할 수 있는 가장 낮은 농도, 정량 한계 • Limit of linearity (LOL) • when signal is no longer proportional to concentration, 선형 한계 • Dynamic range 유용한 측정농도 범위

  29. Selectivity: • No analytical method is completely free from interference by concomitants. Best method is more sensitive to analyte than interfering species (interferent). • Matrix with species A&B • Signal = mAcA +mBcB + Signal blank • Selectivity coefficient • kB,A = mB/mA • k's vary between 0 (no selectivity) and large number (very selective).

  30. Calibration methods • 검정 • Basis of quantitative analysis is magnitude of measured property is proportional to concentration of analyte • Signal ∝ µ[x] • Signal = m[x]+ Signal of blank • [x] = {Signal -Signal of blank}/m

  31. Standard Addition Method • spiking • 같은 크기의 시료 분취량에 • 표준물 용액 일정량을 증가시키며 더하고 측정 • 매트릭스는 표준물 첨가후에도 거의 변화없다고 가정 • 최소제곱분석법

  32. Internal Standard Method • 내부 표준 • 모든 시료, 바탕, 그리고 분석 표준물에 일정량씩 더하는 물질 • 검정곡선 획득 • 신호비=표준 분석물의 신호/내부 표준물의 신호 • 신호비를 표준물의 농도에 대해 그려 얻는다. • 우연오차와 계통오차를 보정할 수 있다 • 적당한 내부표준물 확보가 어렵다

  33. Calibration curves (working or analytical curves)

  34. Example

  35. Calculate Precision

  36. Calibration Expression

  37. Species of interest • All constituents • including analyte. • Matrix-analyte • =concomitants • Often need pretreatment - chemical extraction, distillation, separation, precipitation

More Related