1 / 78

On Some Fuzzy Optimization Problems

On Some Fuzzy Optimization Problems. 主講人:胡承方博士 義守大學工業工程與管理學系 April 16, 2010. 模糊理論. Zadeh (1965) 首創模糊集合 (Fuzzy Set) 何謂「 Fuzzy 」 今天天氣「有點熱」 顧客的滿意度「頗高」 從清華大學到竹科的距離「很近」 義守大學是一所「不錯」的大學. 模糊. 機率. 模糊且隨機. 模糊與機率不同處之比較. 模糊理論. 將人類認知過程中(主要為思考與推理)之不確定性,以數學模式表之。

Download Presentation

On Some Fuzzy Optimization Problems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. On Some Fuzzy Optimization Problems 主講人:胡承方博士 義守大學工業工程與管理學系 April 16, 2010

  2. 模糊理論 • Zadeh (1965) 首創模糊集合 (Fuzzy Set) • 何謂「Fuzzy」 • 今天天氣「有點熱」 • 顧客的滿意度「頗高」 • 從清華大學到竹科的距離「很近」 • 義守大學是一所「不錯」的大學

  3. 模糊 機率 模糊且隨機 模糊與機率不同處之比較

  4. 模糊理論 • 將人類認知過程中(主要為思考與推理)之不確定性,以數學模式表之。 • 把傳統的數學從只有『對』與『錯』的二值邏輯(Binary logic)擴展到含有灰色地帶的連續多值(Continuous multi-value)邏輯。

  5. 模糊理論 • 利用『隸屬函數』(Membership Function)值來描述一個概念的特質,亦即使用0與1之間的數值來表示一個元素屬於某一概念的程度,這個值稱為該元素對集合的隸屬度(Membership grade)。 • 當隸屬度為1或0時便如同傳統的數學中的『對』與『錯』,當介於兩者之間便屬於對與錯之間的灰色地帶。

  6. 傳統集合(Crisp Sets) • 傳統集合是以二值邏輯(Binary Logic)為基礎的方式來描述事物,元素x和集合A的關係只能是A或A,是一種『非此即彼』的概念。以特徵函數表示為:

  7. 模糊集合(Fuzzy Sets) • 而模糊集合則是指在界限或邊界不分明且具有特定事物的集合,以建立隸屬函數(Membership Function)來表示模糊集合,也就是一種『亦此亦彼』的概念。

  8. 隸屬函數(Membership Functions) • 假設宇集(universe)U={x1, x2,…, xn}, 是定義在U之下的模糊集合, • 為模糊集合之隸屬函數(Membership Function)。 • 表示模糊集合 中xi的隸屬程度(Degree of Membership)。

  9. A(x) A A(x) A 20 25 30 35 x 25 30 x crisp set fuzzy set Example Ex: The weather is “good”

  10. Example ……………...

  11. 傳統與模糊集合不同處之比較

  12. 模糊集合表示法 • 宇集U為有限集合 • 宇集U無限集合或有限連續 • 一般的表示方法

  13. Example Ex: A: The weather is “hot”

  14. 模糊集合之運算 • 聯集(Union) • 交集(Intersection) • 補集(Complement)

  15. Example Ex: two fuzzy set and find 1 15 20 x

  16. Example (15)= (15)  (15) =min( (15), (15)) =min(1,0)=0 (20)= (20)  (20) =min( (20), (20)) =min(0.7,0.2)=0.2

  17. a-截集(a -cut或a-level) • 模糊集合 的a-截集定義為: • 而模糊集合 取a -截集所形成的區間範圍為

  18. Fuzzy numbers • Two classes One class has 30 students One class has 25 students

  19. 模糊數(Fuzzy Numbers) • If is a normal fuzzy set on R and is a closed interval for each then is a fuzzy number. (Note that: is a normal, if

  20. 模糊數的種類 • 三角形模糊數(Triangular Fuzzy Number) • 梯形模糊數(Trapezoidal Fuzzy Number) • 鐘形模糊數(Bell Shaped Fuzzy Number) • 不規則模糊數(Non-Symmetric Fuzzy Number)

  21. 三角形模糊數

  22. 梯形模糊數

  23. 鐘形模糊數

  24. 不規則模糊數

  25. 模糊運算(Fuzzy Arithmetic) • 模糊數加法 • 模糊數乘法 • 模糊數除法 • 模糊數倒數 • 模糊數開根號運算

  26. 模糊數加法 • 三角形模糊數 • :模糊數加法運算子 • 梯形模糊數

  27. 模糊數乘法 • 三角形模糊數(k>0) •  :模糊數乘法運算子 • 梯形模糊數

  28. 模糊數乘法 • 三角形模糊數(a1>0,a2>0) •  :模糊數乘法運算子 • 梯形模糊數

  29. 模糊數除法 • 三角形模糊數 • :模糊數除法運算子 • 梯形模糊數

  30. Fuzzy Ranking

  31. Why ranking fuzzy numbers ? • Two classrooms to be preassigned to two classes One large room One small room One class has 30 students One class has 25 students

  32. Fuzzy Ranking Solving is to find optimal solutions to the system of fuzzy linear inequalities problem

  33. Example

  34. How to rank fuzzy numbers? • The study of fuzzy ranking began in 1970's • Over 20 ranking methods were proposed • No \best" method agreed

  35. How to Select Fuzzy Ranking • Easy to compute • Consistency • Ability to discriminate • Go with intuition • Fits your model • Consider combination of different rankings

  36. Optimization Optimization models can be very useful.

  37. Optimization models for Decision making

  38. Past Industrial Experience Optimization models can be very useful. Problems are harden to define than to solve. Most decision are made under uncertainty.

  39. Fuzzy Optimization

More Related