1 / 56

Rare K Decays: Report from the Sensitivity Frontier.

Rare K Decays: Report from the Sensitivity Frontier. R. Tschirhart Fermilab August 9th 2002. C. Dukes, University of Virginia D. Jaffe, BNL. S. Chen, TRIUMF G. Lim KEK P. Cooper, FNAL CKM, KOPIO, and KEK-391 collaborations. Lots of fine material borrowed from….

Download Presentation

Rare K Decays: Report from the Sensitivity Frontier.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rare K Decays: Report from the Sensitivity Frontier. R. Tschirhart Fermilab August 9th 2002 R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  2. C. Dukes, University of Virginia D. Jaffe, BNL. S. Chen, TRIUMF G. Lim KEK P. Cooper, FNAL CKM, KOPIO, and KEK-391 collaborations. Lots of fine material borrowed from… R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  3. B(K+ -> p+nn)=1.57+1.75-0.82x10-10 R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  4. The K pll decay modes allow access to quark level physics since dependence on hadronic physics can be removed by normalizing to the well measured K l+pn processes. This is new ground for kaon physics. Unfortunately the pl+l- final states, while easier to measure, have correspondingly high levels of radiative backgrounds, (e.g. KL e+e-gg) Which leads us to the K pnn challenge… Quantitative Tests of the CKM Formalism. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  5. K pnn in the Standard Model • No Radiative Backgrounds. (& No radiative signal!) • Leading diagrams Direct sensitivity toVtd, and BSM physics such as SUSY that can be present in these loops. Dressing up into hadrons: R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  6. Let’s review the quark level theory of these processes…. The CKM Matrix: R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  7. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  8. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  9. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  10. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  11. Testing the CP structure of the CKM Matrix: R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  12. CKM structure of these modes… Vtd Normalize to semileptonic process. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  13. Expectation and Measurements… Uncertainty dominated by current errors on A,r, and h. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  14. BNL E787 completed. Flux of 5.9x1012 stopped kaons analyzed. Two candidate events found with a measured background of 0.15+/-0.05 events corresponding to: BNL E949 running, upgrade of E787. Expect an effective flux of 40x1012 stopped kaons corresponding to 5-10 SM events. Fermilab CKM (Charged Kaons at the Main injector) approved. Decay in-flight technique with a goal of 100 SM events over 10 background. This will match expected theory uncertainty. Physics Results in 200X. The K+p+nn Experimental Program B(K+p+nn) = (1.57+1.75-0.82) x10-10 R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  15. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  16. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  17. Signal and Background Kinematics… R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  18. E787/E949: The definitive stopped K+ detector. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  19. BNL E787/E949 Instrumentation: 1-2 MHz of K+ stop in active target. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  20. Instrumentation continued… Particle ID exploits space and time topology of p m e decay chain. This limits max rate to less than about ~tm (1 msec). tm R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  21. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  22. E787 Analysis Strategy. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  23. Validating analysis cut inversion to determine background estimates from the data: 2-body pp from K+ p+p0 decays: pp before g-veto. pp after g-veto. (1-ep0 = 1.7x10-7 ) R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  24. On opening the box, two events are found… Background dominated by K+p+p0 where p0 veto failed. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  25. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  26. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  27. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  28. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  29. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  30. Ring Radius (cm) Track Momentum (GeV/c) R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  31. M2missp0 = 18x10-3 Gev2/c4 R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  32. Full GEANT simulation of: K+p+p0 Bkg. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  33. b=1 Rings R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  34. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  35. KTeV search complete. Flux of 0.33x1012 in-flight kaon decays analyzed. No events observed. Limit (90% CL) of <5.9x10-7 established. Technique required Dalitz decay of p0 (p0 e+e-g) to control backgrounds to 0.1 event level. New techniques required to reach SM level. KEK-E391a in construction, commissioning this Fall. Technique is based on fully hermetic photon veto coverage. Expected sensitivity of 1x10-10. This is still x30 above SM level, but this experiment is vitalto establish hermetic photon veto techniques. Proposed continuation to JHF in 200X. BNL KOPIO experiment approved. Novel techniques to measure K0 momentum and photon directions. Expected sensitivity of 50 SM events over a background of ~20 events. Physics Results in 200X. The KLp0nn Experimental Program R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  36. KL Decay Modes…Everything is the enemy; some worse than others…. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  37. Where is the goal? G.Y. Lim; KEK Ke3, Kp3, Km3 BR(KLgponn) KTeV d Current Exp. Limit hep-ph/9908399 hep-ph/9804412 hep-ph/9808487 Limit from K+gp+nn (PRL 84, 3768 (2000)) E391a New Physics (?) S. M. Prediction JHF KOPIO(BNL) R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  38. B.G. from KLgp-e+n Decay Veto charged particles Detector Inefficiency • Inefficiency of g detection Inefficiency for charged particles G.Y. Lim; KEK NIM A359 p478 (1995) R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  39. E391a Detector Setup • KLpo n n • ggNothing • pure CsI calorimeter4pveto system R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  40. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  41. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  42. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  43. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  44. Let’s consider a possible scenario of how B&K precision measurements can probe for physics beyond the Standard Model…. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  45. 1-s Bands for K pnn and sin2b & Dms/Dmd at Standard Model Central Values: R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  46. 1-s Bands for KLp0nn and sin2b & Dms/Dmd at SM level and K+ p+nn at E787 central value: R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  47. s-Contours for KLp0nn and sin2b & Dms/Dmd at SM level and K+ p+nn at E787 central value: With E949 alone With CKM experiment R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  48. Rare kaon physics has matured to the point where the step from proven 1x10-11sensitivity to 1x10-12 has been sensibly argued. This sensitivity is the key that will unlock the door to K pnn. This step is fueled by ever increasing proton drivers (7x1013 protons/pulse with the AGS!), very clean kaon beams, and innovative detector technologies. The CKM, KOPIO, and E391@JHF form a suite of promising experiments that can reach the 1x10-12 frontier in this decade. Conclusions R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  49. Spare Slides. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

  50. R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

More Related