300 likes | 406 Views
Hrvoje Štefančić Universitat de Barcelona IRGAC 2006, Barcelona July 14, 2006. What is in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?. Accelerating universe. accelerating universe – observationally established
E N D
Hrvoje Štefančić Universitat de Barcelona IRGAC 2006, Barcelona July 14, 2006 What is in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?
Accelerating universe • accelerating universe – observationally established • mechanism behind the acceleration? • dark energy • alternative mechanisms: modified gravity, braneworlds, ... • dark energy – single component which encodes all our ignorance – efficient effective description - “a black box”
Cosmic coincidences observational features • w presently close to -1 • possible CC boundary crossing at small redshift • the ratio of dark energy density and matter energy density presently of order 1 • Variable cosmological parameters (phenomenology, RGE approaches, holographic DE, 4D effective description of the dynamics in higher dimensions) • composite dark energy (multiple dark energy components) S. Hannestad, E. Mortsell, JCAP 0409 (2004) 001 A. Upadhye, M. Ishak, P.J. Steinhardt, Phys. Rev. D 72 (2005) 063501 H.K. Jassal, J.S. Bagla, T. Padmanabhan, astro-ph/0601389 G-B. Zhao, J-Q. Xia, B. Feng, X. Zhang, astro-ph/0603621 proposed approaches
Formalism – variable cosmological parameters • modification of GR at the level of Einstein equation • Generalized Bianchi identity • GR as a limit (for nonvariable parameters)
Cosmology – variable cosmological term picture • FRW metrics – generalized Bianchi identity gives 1) 2) 3) 4) variable CC energy density matter density (possibly interacting)
Variable cosmological term picture • variability of parameters with redshift • Hubble parameter
Cosmology – dark energy picture dark energy matter (noninteracting) • standard formalism
Matching of pictures • Effective dark energy behaviour – matching of pictures • general results J. Solà, H. Š., Mod. Phys. Lett. A 21 (2006) 479 Generalized Bianchi identity + +
Matching of pictures (2) • redshift dependence of the efective dark energy EOS existence of z* close to z=0
Effective dark energy EOS • slope of the effective dark energy monotonously growing with redshift phantom-like quintessence-like monotonously falling with redshift quintessence-like phantom-like
Dark energy effective EOS • noninteracting (conserved – standard scaling)
An example – RG motivated model J. Solà, H. Š., Phys. Lett. B 624 (2005) 147 • Hubble parameter as a RG scale
Explanation of w(z) “coincidence” • If it exists (to be hopefuly resolved by the upcoming observational data), the CC boundary transition • should happen at small redshift • is allowed for a wide range of parameters (no special values need to be chosen) • The parameter of effective dark energy EOS is at present close to w(0)=-1 (general result) • w(z) may exibit substantial variation with the redshift
Composite dark energy J. Grande, J. Solà, H. Š., gr-qc/0604057 • matter component (noninteracting) • two (interacting) dark energy components: (variable) cosmological term + additional dynamical component interaction dynamics
Evolution of analytical (closed form) solution – simple expressions for =const stopping of the expansion: H(z)=0 r has a maximum! How high is it? the redshift dependence of (z)?
Parameter constraints • nucleosynthesis bound: • existence of the expansion stopping • height of the maximum of r :
Parametric dependence • dependence
Time evolution • The peak of r(z) is less pronounced
Special cases and extensions • The effect persists for . r is not bounded from below • Variable cosmological term Lambda and variable Newton coupling G – similar results J. Grande, J. Solà, H. Š., in preparation
Conclusions • effective dark energy picture for the cosmological models with variable parameters • general and simple analitic results - “RG like” relation between and • counterintuitive behaviour of the effective dark energy density • explanation of w(z) “coincidences” • composite dark energy – solution of the r(z) coincidence problem • when the expansion of the universe stops, r(z) is bounded from above • r(z) may stay close to r(0) for a nonnegligible volume of the parametric space
Observational evidence • Dark energy EOS w(z) – various parametrizations used • variability with the redshift • w(z) close to -1 • indication of CC boundary crossing S. Hannestad and E. Mortsell, JCAP 0409 (2004) 001 w(a)=w0 w1(aq + asq)/(aq w1+asq w0)
Variable cosmological parameters – motivation (1) • Phenomenological approaches • “relaxation” of CC – solution of the CC problem • Dirac – big number hypothesis – variable G • cosmology with a decaying vacuum -K. Freese, F.C. Adams, J.A. Frieman, E. Mottola, Nucl. Phys. B 287 (1987) 797 • variable CC interacting with matter - J.M. Overduin, F.I. Cooperstock, Phys. Rev. D 58 (1998) 043506 • variable G and CC - A. Beesham, Nuovo Cim. B 96 (1986) 17
Variable cosmological parameters – motivation (2) • RG cosmology • quantum field theory in curved space-time • soft decoupling -importance of the most massive fields • scale dependent effective quantum gravity action (Einstein-Hilbert truncation) • RG flow - IR fixed point hypothesis I.L. Shapiro, J. Solà, Phys. Lett. B 475 (2000) 236 I.L. Shapiro, J. Solà, JHEP 0202 (2002) 006 A. Babić, B. Guberina, R. Horvat, H. Š., Phys. Rev. D 65 (2002) 085002 I.L. Shapiro, J. Solà, C España-Bonet, P. Ruiz-Lapuente, Phys. Lett. B 574 (2003) 149 A. Bonnano, M. Reuter, Phys. Rev. D 65 (2002) 043508 A. Bonnano, M. Reuter, Phys. Lett. B 527 (2000) 9
Variable cosmological parameters – motivation (3) • A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82 (1999) 4971 • Effective field theory + entropy constraint = relation between UV( ) and IR (1/L) cutoffs • excluding all states that lie within their Schwarzschield radius • Holographic dark energy – M. Li, Phys. Lett. B 603 (2004) • Variable cosmological term - R. Horvat, Phys. Rev. D 70 (2004) 087301
Variable cosmological parameters – motivation (4) • Higher-dimensional models (e.g. GR in 4+N dimensions) • Variability of e.g. G due to dynamics of extra (compactified) dimensions