1 / 132

Сильно неупорядоченные сверхпроводники и квантовые фазовые переходы

М.В. Фейгельман Институт теоретической физики им. Л. Д. Ландау Московский физико-технический институт. Сильно неупорядоченные сверхпроводники и квантовые фазовые переходы сверхпроводник-изолятор. Школа МИФИ, 25.09.2010. Phys Rev B 40 182 (1989).

keena
Download Presentation

Сильно неупорядоченные сверхпроводники и квантовые фазовые переходы

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. М.В. ФейгельманИнститут теоретической физики им. Л. Д. ЛандауМосковский физико-технический институт Сильно неупорядоченные сверхпроводники и квантовые фазовые переходы сверхпроводник-изолятор Школа МИФИ, 25.09.2010

  2. Phys Rev B 40 182 (1989) Почему и как происходит трансформация сверхпроводящего состояния в диэлектрическое ? Есть много разных ответов, часть из них будет представлена на этих двух лекциях В.Ф.Гантмахер и В.Т. Долгополов УФН 180, 3 (2010)

  3. Lecture 1 • Disordered superconductors (basics) • Suppression of superconductivity by disorder: 3 types of materials and 3 major mechanisms • Granular superconductors and artificial arrays 1). Superconductivity in a single grain 2) Granular superconductors: experiments 3) Theories of SIT. Which parameter drives the S-I transition ? 4) BKT transitions in 2D JJ arrays 5) 2D JJ arrays with magnetic field: Bose metal ?? • Homogeneously disordered thin films 1) Suppression of Tc by disorder-enhanced Coulomb 2) Mesoscopic fluctuations of Tc near the QPT 3) Quantum S-M transition: SC islands on top of a poor metal film Experimental realization: graphen

  4. Disordered superconductors (classical results) • Potential disorder does not affect superconductive transition temperature (for s-wave) – A.A.Abrikosov & L.P.Gor’kov 1958 P.W.Anderson 1959 • In the “dirty limit” l << ξ0 coherence length decreases asξ ~ (l ξ0 )1/2 whereas London length grows asλ ~ l -1/2 Accuracy limit: semi-classical approx. kFl >> 1 or (the same in another form) G = σ (h/e2) ξd-2 >> 1 What happens if G ~ 1 ?

  5. “Anderson theorem” leads to BCS gap equation const Approx. 1 = g ∫ N(0) (dξ/ξ) th(ξ/2T)

  6. Major types of disordered superconductive materials • Very strongly disordered metallic alloys with usual carrier density (~1022/cm3) bulk conductivity near Mott limit, G ~ 1 • Granular superconductive metals or artificially prepared arrays of islands inter-granular conductance Gt ~ 1 • Homogeneously disordered “poor metals” with low (~< 1021/cm3) carrier density (Second lecture)

  7. Superconductivity v/s Localization • Granular systems with Coulomb interaction “Bosonic mechanism” • Coulomb-induced suppression of Tc in uniform films “Fermionic mechanism” • Competition of Cooper pairing and localization (no Coulomb) (2nd lecture)

  8. I. Granular arrays Reviews: I.Beloborodov et al, Rev. Mod.Phys.79, 469 (2007) R.Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001)

  9. Grain radius a >> λF g ≈ const Examples: Phys Rev B 1981 Phys Rev B 1987

  10. Basic energy scales Grain radius a is large on atomic scale: kF a >> 1 Coulomb energyEc= e2/a Level spacing inside grainδ = 1/(4a3 ) Intra-grain Thouless energy Eth = ћD0/4a2 δ << Eth << Ec g0 = Eth/ δ = 2500 Example: Al grains with a=20 nm δ = 0.02 K Eth = 50 K Ec = 1000 K Typical temperature range 4 K < T < 300 K Γ ~ 1K for gT = 50

  11. Intergrain coupling Low transmission, but large number of transmission modes σT = (4πe2/ћ) 2 <|tpk|2> gT = σT h/e2 - dimensionless inter-grain conductance Effective diffusion constant Deff = Γ a2/ћ << D0 A) Granular metal gT ≥ 1 Narrow coherent band Γ =gT δ<< Eth Γ~ 1K for gT = 50 B) Granular insulator gT ≤ 1 Nearest-neighbors coupling only !

  12. 1) Superconductivity in a single grain • What is the critical size of the grain ac? • What happens if a < ac ? • Assuming ξ0 >>a >> ac , what is the critical magnetic field ?

  13. Critical grain size Mean-field theory gap equation: Δ = (g/2) Σi Δ/[εi2 + Δ2]1/2 Level spacing δ << Δallows to replace sum by the integral and get back usual BCS equation Grain radius a >> ac = (1/ Δν )1/3

  14. Ultra-small grains a<<ac • No off-diagonal correlations • Parity effect ------- ------- EF --↑↓-- --  ↓-- K. Matveev and A. Larkin PRL 78, 3749 (1997) Perturbation theory w.r.t. Cooper attraction: Take into account higher-order terms (virtual transitions to higher levels):

  15. Critical magnetic field for small grain A. Larkin 1965 ac << R << ξ0 Orbital critical field for the grain Local transition temperature Tc is determined by equation: Which follows from Deparing parameter (orbital) Zeeman term alone leads to >> ac Orbital deparing prevails at R > Ro-z~

  16. 2) Granular superconductors: experiments • Very thin granular films • 3D granular materials • E-beam - produced regular JJ arrays

  17. Thin quenched-condensed films A. Frydman, O. Naaman, R. Dynes 2002 Sn grains Pb grains

  18. Granular v/s Amorphous films A.Frydman Physica C 391, 189 (2003)

  19. Phys Rev B 40 182 (1989) Conclusion in this paper: control parameter is the normal resistance R. Its critical value is RQ = h/4e2 = 6.5 kOhm

  20. Bulk granular superconductors Sample thickness 200 nm

  21. Bulk granular superconductors

  22. Artificial regular JJ arrays

  23. What is the parameter that controls SIT in granular superconductors ? • Ratio EC/EJ ? • Dimensionless conductance g = (h/4e2) R-1 ? (for 2D case)

  24. 3) Theoretical approaches to SIT • K.Efetov ZhETF 78, 2017 (1980) [Sov.Phys.-JETP 52, 568 (1980)] Hamiltonian for charge-phase variables • M.P.A.Fisher, Phys.Rev.Lett. 65, 923 (1990) General “duality” Cooper pairs – Vortices in 2D • R.Fazio and G.Schön, Phys. Rev. B43, 5307 (1991) Effective action for 2D arrays

  25. K.Efetov’s microscopic Hamiltonian Control parameter Ec = e2/2C Artificial arrays: major term in capacitance matrix is n-n capacitance C qi and φi are canonically conjugated

  26. Logarithmic Coulomb interaction Artificial arrays with dominating capacitance of junctions: C/C0 > 100 Coulomb interaction of elementary charges U(R) = For Cooper pairs,xby factor 4

  27. M.P.A.Fisher’s duality arguments Insulator is a superfluid of vortices R In favor of this idea: usually SIT in films occurs at R near RQ Insulator RQ • Problems: i) how to derive that duality ? • What about capacitance matrix • in granular films ? • iii) Critical R(T) is not flat usually T • Competition between Coulomb repulsion and Cooper pair hopping: Duality charge-vortex: both charge-charge and vortex-vortex interaction are Log(R) in 2D. Vortex motion generates voltage: V=φ0 jV Charge motion generates current: I=2e jc At the self-dual point the currents are equal → RQ=V/I=h/(2e)2=6.5kΩ.

  28. Can we reconcile Efetov’s theory and result of “duality approach” ? We need to account for capacitance renormalization to due to virtual electron tunneling via AES [PRB 30, 6419 (1984)] action functional Virtual tunneling Charging Sts = g Josephson (if dφ/dt << Δ) Sts = (3g/32 Δ) Cind = (3/16) ge2/ Δ

  29. Mean-field estimate with renormalized action SC transition at T=0: J = gΔ/2 Strong renormalization of C:

  30. Can one disentangle “g” and “EC/EJ” effects ? JETP Lett. 85(10), 513 (2007) This model allows exact duality transformation Control parameter Experimentally, it allows study of SIT in a broad range of g and/or EJ/EC

  31. 4) Charge BKT transition in 2D JJ arrays Logarithmic interaction of Cooper pairs 2e R.Fazio and G.Schön, Phys. Rev. B43, 5307 (1991) U(R) = 8 EC Temperature of BKT transition is T2 = EC/π Not observed ! The reason: usually T2 is above parity temperature Interaction of pairs is screened by quasiparticles T1 = EC/4π Charge BKT is at (unless T* is above T2 )

  32. 5) “Bose metal” in JJ array ? At non-zero field simple Josephson arrays show temperature-independent resistance with values that change by orders of magnitude.

  33. Dice array (E.Serret and B.Pannetier 2002; E.Serret thesis, CNRS-Grenoble) Foto from arxiv:0811.4675 At non-zero field Josephson arrays of more complex (dice) geometry show temperature independent resistance in a wide range of EJ/Ec

  34. The origin of “Bose metal” is unknown Hypothesis: it might be related to charge offset noise

  35. Josephson Arrays Elementary building block

  36. Josephson Arrays Elementary building block Al Al2O3 Al - + + - +

  37. Conclusion for granular superconductive arrays:1) basic features of SIT are understood2) really quantitative SIT theory is not constructed yet

  38. II. Homogeneously disordered SC films 1) Suppression of Tc by disorder-enhanced Coulomb 2) Mesoscopic fluctuations of Tc near the QPT 3) Quantum S-M transition: SC islands on top of a poor metal film 4) Experimental realization: graphen

  39. 1) Suppression of Tc in amorphous thin films by disorder-enhanced Coulomb interaction Theory Experiment Review: Generalization to quasi-1D stripes: Yu. Oreg and A. M. Finkel'stein Phys. Rev. Lett. 83, 191 (1999) Similar approach for 3D poor conductor near Anderson transition: P. W. Anderson, K. A. Muttalib, and T. V. Ramakrishnan, Phys. Rev. B 28, 117 (1983)

  40. Amorphous v/s Granular films

  41. Suppression of Tc in amorphous thin films: experimental dataand fits to theory J.Graybeal and M.Beasley Pb films

  42. Suppression of Tc in amorphous thin films: qualitative picture • Disorder increases Coulomb interaction and thus decreases the pairing interaction (sum of Coulomb and phonon attraction). In perturbation theory: g = σ h/e2 Return probability in 2D Roughly, But in fact BCS-type problem with energy-dependent coupling must be solved The origin of the correction term ??????? It is “revival” of strong Coulomb repulsion, due to slow diffusion at g ~ 1

  43. Why Coulomb repulsion does not kill phonon attraction (sometimes)? Coulomb pseudo-potential μ(ω) = μ0 / [1+ μ0 ln (EF/ω)] Normally, μ0 ~ 1 and ln (EF/ω) >> 1 “Tolmachev Logarithm” ω ~ ωD ~ 0.05 eV whereas EF ~ 5 eV At the energy scale ωDrelevant for phonon process, full amplitude in the Cooper channel can be attractive at smallλ λ = λ0 - 1/ln (EF/ω) > 0

  44. Why disorder leads to “Coulomb revival” ? Matrix element of Coulomb repulsion: Uij = ∫Ψi2(r)Ψj2(r’) U(r-r’) dr dr’ U(r) is short-range <Ψi2(r) Ψj2(r)> = V-1 [1 + (1/g) ln (1/τωij ) ] Uniform term subject to Tolmachev Log Enhancement due to disorder

  45. Diagrams for Coulomb suppression of the Cooperon

  46. Fluctuations of the local Density of States Review: A.Mirlin, F.Evers, Rev. Mod. Phys. (2008) β= 1 (T-invariant) or = 2 (no T-invariance)

  47. Renormalization Group: summation of major diagrams In the form developed in M.F., A.Larkin & M.Skvortsov (Phys.Rev.B 2000)

More Related