400 likes | 562 Views
Laplacian Mesh Optimization. Andrew Nealen TU Berlin Takeo Igarashi The University of Tokyo / PRESTO JST Olga Sorkine Marc Alexa TU Berlin. What is it ?. Overview. Motivation Problem formulation Laplacian mesh processing basics Laplacian mesh optimization framework Applications
E N D
Laplacian Mesh Optimization Andrew NealenTU Berlin Takeo IgarashiThe University of Tokyo / PRESTO JST Olga Sorkine Marc Alexa TU Berlin
Overview • Motivation • Problem formulation • Laplacian mesh processing basics • Laplacian mesh optimization framework • Applications • Triangle shape optimization • Mesh smoothing • Discussion
Motivation • Local detail preserving triangle optimization • A Sketch-Based Interface for Detail Preserving Mesh Editing [Nealen et al. 2005]
= L x d Motivation • Local detail preserving triangle optimization • A Sketch-Based Interface for Detail Preserving Mesh Editing [Nealen et al. 2005] • Can we perform globaloptimization this way ?
L x d Laplacian Mesh Processing • Discrete Laplacians n = duniform: wij = 1 dcotangent: wij = cot aij + cot bij
dx dy dz L L L x y x z d Laplacian Mesh Processing • Surface reconstruction n = duniform: wij = 1 dcotangent: wij = cot aij + cot bij
dx dy dz 1 1 c2 c1 1 1 1 1 L L L x z y Laplacian Mesh Processing • Surface reconstruction n = fix edit
dx dy dz 1 1 c2 c1 1 1 1 1 L L L z y x ATA x AT b = AT b x (ATA)-1 = A x b = Laplacian Mesh Processing • Least-squares solution n wLi wLi = fix w1 w1 edit Normal Equations w2 w2
dx dy dz 1 c1 1 1 L L L L L L x z y Laplacian Mesh Processing • Tangential smoothing n = fix
dx dy dz 1 c1 1 1 L L L y z x Laplacian Mesh Processing • Tangential smoothing n = fix
dx dy dz 1 c1 1 1 L L L y z x Laplacian Mesh Processing • Tangential smoothing n = fix
= L x d More motivation… • So: can we use such a system for globaloptimization ?
Our Solution • All vertices are (weighted) anchors • Preserves global shape • Uses existing LS framework • Anchor + Laplacian weights determine result
WL WL WP WP p L x f Framework • Detail preserving tri shape optimization for L = Luni and f = dcot(similar to local optimization) • Mesh smoothingL = Lcot (outer fairness) or L = Luni (outer and inner fairness) and f = 0 =
WP WP p x d Tri Shape Optimization • Detail preserving tri shape optimization Luni =
WL WL WP WP p L x 0 Mesh Smoothing • Mesh smoothing L = Lcot (outer fairness) or L = Lumb (outer and inner fairness) and f = 0 • Controlled by WP and WL (Intensity, Features) • Similar to Least-Squares Meshes [Sorkine et al. 04] =
Discussion • The good... • Easily controllable tri shape optimization and smoothing • Leverages existing least squares framework • Can replace tangential smoothing step for general remeshers • ... and the not so good • Euclidean distance is not Hausdorff distance, so error control is indirect • Does rely on some (user) parameter tweaking
Thank you ! • Contact info Andrew Nealen nealen@cs.tu-berlin.de Takeo Igarashi takeo@acm.org Olga Sorkine sorkine@cs.tu-berlin.de Marc Alexa marc@cs.tu-berlin.de