380 likes | 524 Views
Integrating Global MHD Models with SECCHI Observations Pete Riley, Zoran Mikic, Jon Linker, Roberto Lionello, and Slava Titov SAIC, San Diego, California . R. Howard and A. Vourlidas NRL, Washington, DC. 5th SECCHI Consortium Meeting: SECCHI First Lights Orsay, March 5 - 8, 2007.
E N D
Integrating Global MHD Models with SECCHI Observations Pete Riley, Zoran Mikic, Jon Linker, Roberto Lionello, and Slava Titov SAIC, San Diego, California. R. Howard and A. Vourlidas NRL, Washington, DC. 5th SECCHI Consortium Meeting: SECCHI First Lights Orsay, March 5 - 8, 2007
Overview • Our MHD Approach • Modeling the ambient solar wind • Modeling CMEs • The SAIC-SECCHI modeling website • Summary
Ambient Solar Wind: Eclipse Prediction CR2040+CR2041 (Feb 18 – Mar 17, 2006) Latitude Longitude
Ambient Solar Wind: Eclipse Prediction Image from Greece: Willams College Expedition* Magnetic field lines and Photospheric magnetic field Simulated White Light *Photo credit: The eclipse photo was taken by the Williams College Eclipse Expedition (Jay Pasachoff, Bryce Babcock, Steven Souza, Jesse Levitt, Megan Bruck, Shelby Kimmel, Paul Hess, Anna Tsykalova, and Amy Steele), with support from NSF/NASA/National Geographic.
Ambient Solar Wind: Eclipse Prediction Observations MHD Simulation Image from Egypt: Jean Mouette** **Photo credit: Courtesy of Jean Mouette and Serge Koutchmy, CNRS (France).
Modeling the May 12, 1997 CME max Br ≈115G in AR
Energization of the Magnetic Field • Active region magnetic fields have free magnetic energy, i.e. W > Wpot Necessary for eruption • Unfortunately, vector magnetograms available for AR8038 are of poor quality We must energize the magnetic field in an ad hoc way • We apply a flux preserving vortical flow : • The direction of the twist matches the sign of (= Jz/Bz) for linear FF calculation (Liu, JASTP, 2004).
Shear Flow Introduced to Build Energy smax = 0 smax = 0.013 rad smax = 0.056 rad smax = 0.11 rad
-1 0 1 2 3 4 -1 -.1 .8 1.7 2.6 3.5 Simulated Emission on May 11, 1997 EIT 171Å EIT 195Å Log10(DN/s) EIT 284Å SXT (composite) Log10(DN/s) -2 -1.2 -.4 .4 1.2 2 2.8 0 1 2 3 4
-1 0 1 2 3 4 -1 -.1 .8 1.7 2.6 3.5 Observed Emission on May 11, 1997 EIT 171Å EIT 195Å Log10(DN/s) EIT 284Å SXT (composite) Log10(DN/s) -2 -1.2 -.4 .4 1.2 2 2.8 0 1 2 3 4
Sigmoidal Structure Simulated EIT 195Å Observed EIT 195Å
Propagation of the Simulated CME in the Corona Magnetic Field Lines Polarization Brightness 6.8 hours after Flux Cancellation begins 7.8 hours 8.8 hours
Longitude of Observer: 55 Deg. Meridional View View from N. Pole N CME Observer
CME Longitude of Observer: 99 Deg. Meridional View View from N. Pole N Observer
CME Longitude of Observer: 143 Deg. Meridional View View from N. Pole N Observer
STEREO Observations: 1 year (~44 deg. separation) Longitude of Observer: 123 Deg. Longitude of Observer: 168 Deg. STEREO B STEREO A
STEREO Observations: 2 years (~88 deg separation) Longitude of Observer: 99 Deg. Longitude of Observer: 190 Deg. STEREO B STEREO A
STEREO Observations: 3 years (~132 deg separation) Longitude of Observer: 77 Deg. Longitude of Observer: 213 Deg. STEREO B STEREO A
Summary • We have continued to develop and improve our global MHD model of the solar corona and inner heliosphere; • Ambient solar wind model can reproduce essential features of coronal and in situ observations; • New CME results are very promising: Some “classic” emission and white light signatures of CMEs are produced; • New website will make these modeling results available to scientific community: • iMHD.net/stereo • Username: stereo • Password: ****** • We welcome input from SECCHI community in developing new tools for the website