470 likes | 592 Views
Generalized Symbolic Trajectory Evaluation. Jin Yang Strategic CAD Labs., Intel Architecture Group, Intel Corporation jin.yang@intel.com Feb., 2001. Who Are We?. SCL - A CAD Research Organization within Intel
E N D
Generalized Symbolic Trajectory Evaluation Jin Yang Strategic CAD Labs., Intel Architecture Group, Intel Corporation jin.yang@intel.com Feb., 2001
Who Are We? • SCL - A CAD Research Organization within Intel • research & transfer new design technologies vital to Intel’s future product lines in the areas of • logic verification PV/PD Synthesis • composed mostly of Ph.D.s with various academia and industrial backgrounds • Logic Group • fundamental and applied FV researches in the areas of • model checking, theorem proving, HLM, abstraction, ... • datapath FV, processor FV, system level FV, protocol, … • 7 Ph.D.s / 2 M.S. • Close relation with Academia • SRC funding, mentoring, internship, visiting professors
Overview • Motivation • Specification in GSTE • Model Checking under Strong Semantics • Model Checking under Normal Semantics • Model Checking under Fairness • w-regular equivalent • (G)STE and Abstract Interpretation • Two Case Studies
STE : the Success Story • STE - Symbolic Trajectory Evaluation • a lattice-based model checking technology based on a form of symbolic simulation (Seger & Bryant) • proven high capacity with a high degree of automation • a comprehensive methodology • Active Industrial Usage in Hardware Verification • Intel • floating point arithmetic unit against IEEE 754 • length decoder unit with 12,000 gates and 1100 latches • Motorola • memory units with million transistors • IBM • processor units at abstract level
ck 100 100 100 a c ck e f a[99:0] A[99:0] B[99:0] b d b[99:0] c[99:0] A+B antecedent consequent STE: Simple Specification • Normalized basic STE assertion A1 & N( A2 ) & … & Nk-1(Ak ) ==> C1 & N( C2 )&…& Nk-1( Ck ) • e.g. ( !ck & a[99:0]=A[99:0] & b[99:0]=B[99:0] ) & N( ck ) & N2( !ck ) & N3( ck ) ==> N3( c[99:0]=A[99:0]+B[99:0] )
ck a[99:0] A b[99:0] B next state defining value for all i, id[[Ci ]] ? A A c[99:0] d[99:0] B B e[99:0] A+B A+B f[99:0] A+B STE: Sim.-based Model Checking • Phase 1: Simulation 1 = d[[ A1 ]], 2= d[[ A2 ]] next(1), …, k= d[[Ak]] next(k-1) • Phase 2: Checking
X X 0 0 1 1 T T X 0 1 T X X X 0 X 1 T T X X X 1 0 T X 0 0 0 0 1 T T 0 0 X 1 1 0 1 1 T T 1 1 T T T T T T T T T T STE: Quaternary Circuit Modeling • Work on quarternary {0,1,X,T} instead of boolean {0,1} • X - unknown, T - over-constrained • e.g. only 200 boolean variables are used in the adder, although the circuit has 500 state or input elements
64 64 64 100 100 100 ck ck a c a en e f en +1 b d en b stall STE: Limitation • Very limited expressiveness • what about stall? • stall causes arbitrary long latency • what about backward analysis? • simulation is forward in nature • Challenge • extend expressiveness without losing STE-style model checking efficiency and verification methodology (a=ptr) ==> (b = ptr+1)
s2 s4 s1 s3 s5 s1, s2, s4, s5, s4, s5, ... s2, s4, s5, s4, s5, ... s4, s5, s4, s5, ... s1, s3, s5, s4, s5, s4, ... s3, s5, s4, s5, s4, ... s5, s4, s5, s4, ... Model • State transition on S R(S, S) • every state is initial • no deadlock • Transition-induced model M=(pre, post) • pre(Si) = {s | s’Si.R(s,s’) } • post(Si) = {s’ | sSi.R(s,s’) } • Trace s1, s2, …, si, si+1, … • si+1 post({si}), • and hence si pre({si+1})
s2 s4 s1 M s3 s5 cons: {s4} 2 ant: {s2} 1 3 cons: {s5} * all trivial antecedents and consequences are ignored Assertion Graph: An Example Property 1 • If the system is in state s2, then it will be in state s4 and state s5 alternatively.
Assertion Graph: Formal Definition • Assertion graph G = (V, vI, E, ant, cons) • V - set of vertices • vI - the initial vertex • E - set of edges (each vertex has 1 outgoing edges) • ant - map each edge to a set of states (or equivalently a state predicate) called antecedent • cons - map each edge to a set of states (or equivalently a state predicate) called consequent * first proposed by Seger and Beatty * path: a sequence of consecutive edges from the initial vertex
s2 s4 s1 M s3 s5 cons: {s4} ant: {s2} 2 1 cons: {s5} 3 s1 s2, s4 Strong (original STE) Semantics Trace satisfies path under L, |=L: for every 1i ||,(i) L((i)). Model Mstrongly satisfiesG,M ||= G: for every finite path , for every finite trace , |=ant |=cons First proposed by Jain and clarified by Chou ||= trace 1: trace 2:
s2 s4 s1 M s3 s5 Step cons: {s4} 3 1 2 { } 1 {s2} ant: {s2} { } 2 {s4} { } S post({s2}) S post({}) 1 cons: {s5} { } S post({s4}) {s5} 3 {s2} {s4} 3 4 {s2} {s4} {s4} post({s2}) post({s5}) Model Checking Strong Satisfiability • Phase 1: build simulation relation from edges to state sets ||= 2 {s2} { } {s5} • Phase 2: check consequences
SMC(M, G) 1. if e is from vI sim(e) := ant(e), else sim(e) := F. 2. repeat until fix-point: for every edge e, sim(e) := sim(e) ( (post(sim(e-) ant(e)))). e - in(e) 3. return T if for every edge e, sim(e) cons(e), return F otherwise. * first proposed by Jain and clarified by Chou Model Checking Strong Satisfiability Theorem: SMC(M, G) M ||= G
s2 s4 s1 M s3 s5 cons: {s1} ant: {s2} 3 1 2 s3 s5 trace: Ant. Cons. The property would fail because the antecedent failed after the consequence failure! Limitation of Strong Semantics Property 2 • If the system is in state s2, it must have been in s1 at the previous time.
s2 s4 s1 M s3 s5 cons: {s1} ant: {s2} 3 1 2 s3, s5, … ... trace: Normal Semantics Model MsatisfiesG,M |= G: for every infinite path , for every infinitetrace , |=ant |=cons ||=
transform G’ = (V, vI, E, ant’, cons) G = (V, vI, E, ant, cons) Model Checking Normal Satisfiability • Approach - Reduce to Strong Satisfiability s.t., M |=G M |= G’ M |=G’ M ||= G’ (future independent) Future Extensibility Condition G’ is future extensible on M: for every edge e, for every state s in ant’(e), there is an inf. e-path , an inf. trace from s , |=ant’
s2 s4 s1 M s3 s5 cons: {s1} ant: {s2} 3 1 2 1 2 3 Step 2 S 1 S {s2} S S pre({s2}) {s1} {s2} {s2} pre(S) Model Checking Normal Satisfiability • Phase 1: strengthen antecedents backward ||= • Phase 2: check strong satisfiability
Theorem: NMC(M, G) M |= G Model Checking Normal Satisfiability NMC(M, G) 1. repeat until fix-point: for all edge e, ant(e) := ant(e) ( (pre(ant(e+)))). e+ out(e) 2. call SMC(M, G)
s2 s4 s1 M’ ant: S - {s4,s5} ant: {s4} s3 s5 3 1 2 cons: {s2} 4 ant: {s4,s5} trace: s3, s5, s5, … ... The property would fail because an undesired path is examined! Limitation of Normal Semantics Property 3 • If the system is in state s4, then at the last time when it was neither in s4 nor s5, it must have been in s2.
s2 s4 s1 M’ ant: S - {s4,s5} ant: {s4} s3 s5 3 1 2 cons: {s2} 4 ant: {s4,s5} Theorem: (w-regular equivalence) every det. Streett automaton has an equivalent fair assertion graph Assertion Graph with Fairness Fairness condition: • fair edge sets: E = {E1, E2, …, Ek} • a fair path visits each Ei infinitely often Model Mfairly satisfiesG underE,M |=E G: for every fair infinite path , for every infinite trace , |=ant |=cons ||=
ant: S - {s4,s5} ant: {s2} ant: {s4} ant: {s4} cons: {s2} cons: {s2} ant: {s4,s5} ant: {s4} Model Checking Fair Assertion Graph • More of the same... - Reduce to Strong Satisfiability Fair Extensibility Condition G’ is fairly extensible on M: for every edge e, for every state s in ant’(e), there is an inf. faire-path , an inf. trace from s , |=ant’
FMC(M, G, E) 1. repeat until fix-point: 2. for each fair edge set Ef in E, 3. build backward simulation relation towards Ef; 4. G := replace the antecedents in G with the simulation relation; /* future extensible to Ef*/ 5. call SMC(M, G). Theorem: FMC(M, G, E) M |=E G Model Checking Fair Assertion Graph
Ex 1. T G R Y Relevant Lattice Concepts Finite Complete Lattice (L, ) • L - finite set of points • - partial order relation: • p1 p2 if p1 is less uncertain than p2 • T - top element • - bottom element Ex 2. (2S, ) - subset lattice • S - top element • {} - bottom element Note: we use an partial order relation consistent with
T G R Y post pre R, Y, G, G, ... R, T, T, T, ... T, Y, G, G, ... T, T, T, T, ... Extend Model to Lattice Model M = (pre, post) • pre, post: L L (monotonic) • post(p) = p = • for every p in L, p pre(post(p)) * STE model is a special case where • pre(p) = T for every p. Trajectory p1, p2, p3, …, pi, pi+1, … • pi+1 post(pi), pi pre(pi+1) • pi * a trajectory captures a set of traces
T G R Y |= post cons: G ant: Y pre Semantic Extension • trajectorysatisfies pathunder L: for every i,(i)L((i)). • Satisfiability definitions remain the same except working on trajectory satisfiability ant cons R, Y, G, ... Y, G, G, ... Extend Assertion Graph to Lattice Assertion Graph G=(V, vI, E, ant, cons) • extend ant, cons:E 2Sto E L
Main GSTE Results on Lattice • Extended Model Checking Algorithms: *GSTE • by generalizing , , in *MC to, , • GSTE Theorems • strong semantics: SGSTE(M, G) M ||= G • normal semantics: NGSTE(M, G) M |= G • fairness: FGSTE(M, G, E) M |=E G • Incompleteness • lose information when using coarse lattice • but gain efficiency
{S1, S2, S3 , S4, S5} T ... ... ... {S2, S3} ... {S4, S5} ... G R Y {S1} {S3} {S4} {S5} {S2} { } Abstract Interpretation Concepts • Abstraction of (L, ) - Galois insertion (La, a) abstraction function :L La, such that • (T) = Ta, (p) = a iff p = , • is onto, anddistributive
{00,01,10,11} XX {00,01,10} {00,01,11} {00,10,11} {01,10,11} 0X X0 X1 1X {00,01} {00,10} {00,11} {01,10} {01,11} {10,11} 00 01 10 11 {00} {01} {10} {11} T { } The Quaternary Abstraction • From boolean domain to quaternary domain two variable boolean domain: two variable quaternary domain:
s2 s4 s1 s3 s5 post pre T M G R Y Model Abstraction Abstraction of Model M=(pre, post) Ma=(prea, posta) • (pre(p)) a prea((p)) • (post(p)) a posta((p))
Abstraction in GSTE • Abstraction theorem If G is consequence preserving i.e., -1((cons(e))) = cons(e) for all edge e, then • strong semantics Ma ||= Ga M ||= G • normal semantics Ma |= Ga M |= G • fairness Ma |=E Ga M |=E G
G, M on (L, ) Check the consequence against the concretized simulation relation Ga, Ma on (La, a) Perform antecedent strengthening and simulation relation building on Ga,Ma Concretize the simulation result Abstraction in GSTE • GSTE using Abstraction: a*GSTE(M, G) • when G is not consequence preserving Theorem: 1. strong semantics: aSGSTE(M, G) M ||= G 2. normal semantics: aNGSTE(M, G) M |= G 3. fair semantics: aFGSTE(M, G, E) M |=E G
128 bank0 bank1 bank2 bank3 128 128 128 128 128 datard3 datard2 datard0 datard1 memory block Case Study: A Memory datainbypass 128 alignmask block dataout datawr addr[9:8] bnksel[1:0] 4 addr[9:0] we end[4:0] drive[4:0] ck begin[4:0] align[7:0] 4 banks * 256 entries/bank * 128 bits / entry = 128K bits
ck we addr[9:0] A A datawr[127:0] D drive[3:0] V No write to the same address align[6:0] R begin[3:0] B end[3:0] E dataout[127:0] O we (addr=A) (datawr=D) we ck (addr=A) (drive=V) (align=R) we ck (begin=B) (end=E) dataout= mask(align(drive(D, V), R), B, E) we (addrA) Specification • Correctness Statement: always read from a cell the most recently written data write phase read cycle hold phase
128 bank1 bank0 bank2 bank3 128 we (addr= A) (datawr=D) we ck (addr=A) (drive=V) (align=R) we ck (begin=B) (end=E) dataout= mask(align(drive(D, V), R), B, E) we (addrA) Model Checking datainbypass D[127:0] 128 alignmask block dataout datawr A[9:0] 4 addr[9:0] we 1 end[4:0] drive[4:0] begin[4:0] align[7:0] ck
bank[i].row[j] = D, if A=i*256+ j X, otherwise 128 bank1 bank0 bank2 bank3 128 we (addr= A) (datawr=D) we ck (addr=A) (drive=V) (align=R) we ck (begin=B) (end=E) dataout= mask(align(drive(D, V), R), B, E) we (addrA) Model Checking datainbypass 128 alignmask block dataout datawr 4 addr[9:0] we end[4:0] drive[4:0] begin[4:0] align[7:0] ck
bank[i].row[j] = D, if A=i*256+ j X, otherwise 128 bank1 bank0 bank2 bank3 128 we (addr= A) (datawr=D) we ck (addr=A) (drive=V) (align=R) we ck (begin=B) (end=E) dataout= mask(align(drive(D, V), R), B, E) we (addrA) Model Checking datainbypass 128 alignmask block D dataout datawr A 4 addr[9:0] we 0 end[4:0] drive[4:0] begin[4:0] align[7:0] ck
128 bank1 bank0 bank2 bank3 128 we (addr= A) (datawr=D) we ck (addr=A) (drive=V) (align=R) we ck (begin=B) (end=E) dataout= mask(align(drive(D, V), R), B, E) we (addrA) Model Checking datainbypass 128 alignmask block dataout datawr mask(align(drive(D, V), R, B, E) A 4 addr[9:0] we 0 end[4:0] drive[4:0] begin[4:0] align[7:0] ck
GSTE vs. STE and Classic MC • GSTE • complete black-box verification • complexity - 128K bits • 157 variables used in assertion graph • finished in 833 seconds • STE • requires open-up of the memory • requires three STE assertions for write, retain and read • Classic MC • state explosion under any variable order
datainbypass 128 mask mux predischarge mux 128 select, precharge, and mux align 128 128 128 128 128 datain2 dataout datain3 datain0 datain1 4 4 7 4 2 qclk all 0’s bnksel buspch align drive begin end alignvalid hit# ck Case Study: An AlignMask Module dual-rail
ck alignvalid if it was low first drive[i/32] ant1 / ant2 / con2 bnksel[1:0] S ant5 / ant3 / align[6:0] A ant4 / datain(j)[127:0] ant1: ck alignvalid drive[k] (bnksel=S) (align=A) mutex_for_all_j mutex_for_all_j retain until delivery ant6 / datain(j)#[127:0] dataout[i] ant2: ck alignvalid dataout[i] dataout#[i] ant3: ck alignvalid drive[k] (bnksel=S) (align=A) mutex_for_all_j ant4: ck alignvalid drive[k] ant5: ck alignvalid drive[k] ant6: ck alignvalid drive[k] con2: dataout#[i] (k = i/32) Prop: Two Rails Must be Weak Mutex • Fair Semantics: • bi-directional simulation over • an arbitrary long interval • Complexity: • 9 variables in total • no variables for how to mask Rephrase: if the high rail of a bit i is 1, then the low rail must be 0.
Summary Expressiveness / Time Complexity Fair AG (w-regular) / fix-point 2 FGTE Normal AG / 2 fix-points NGTE Strong AG / 1 fix-point SGTE STE Spec./ 0 fix-point STE Completeness / Space Complexity Coarse lattice abstraction Quaternary abstraction Finer lattice abstraction No abstraction
Comparison with Classic Approach • Similarities • model described as M=(pre, post) • model checking is some form of ‘reachability’ analysis • Differences • clear distinction of antecedents and consequences • lattice based simulation strategy, e.g., for circuits, • no expensive next state function or transition relation • dynamic model abstraction • for-all semantics • more comprehensive methodology • Perhaps …, this work provides a common framework for getting the best of both approaches
Future Work • Bring theory to practice • efficient implementation • debugging environment • methodology development • Relationship with other formal methods • efficient links from/to other temporal logics • GSTE for protocol verification ... • Incorporation of established abstraction techniques • symmetry reduction • uninterpreted function • … ...
X X 0 0 1 1 T T X 0 1 T X X X 0 X 1 T T X X X 1 0 T X 0 0 0 0 1 T T 0 0 X 1 0 1 1 1 T T 1 1 T T T T T T T T T T if !x&!y then v else X a if !x&y then v else X mux b mux if x&!y then v else X c if x&!y then v else X d x y x y STE: Quaternary Circuit Modeling • Boolean {0, 1} to quarternary {0, 1, X, T} • X - unknown, T - over-constrained full symbolic simulation quaternary symbolic simulation 6 variables 3 variables