1 / 27

Lecture 7: Signal Processing IV

Lecture 7: Signal Processing IV. EEN 112: Introduction to Electrical and Computer Engineering. Professor Eric Rozier, 2/ 27/ 13. SCHEDULE. Schedule. QUANTIZATION. Recall the types of functions. Surjective. Injective. Classification and Reconstruction. 0 0.1 0.15762 0.2 0.333333

keira
Download Presentation

Lecture 7: Signal Processing IV

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 7: Signal Processing IV EEN 112: Introduction to Electrical and Computer Engineering Professor Eric Rozier, 2/27/13

  2. SCHEDULE

  3. Schedule

  4. QUANTIZATION

  5. Recall the types of functions Surjective Injective

  6. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  7. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  8. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  9. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  10. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  11. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  12. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  13. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  14. Classification and Reconstruction 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 0 0.1 0.15762 0.2 0.333333 0.447 0.666666 0.9 1.0 00 (0) 01 (1) 10 (2) 11 (3)

  15. Quantization Error • Sampling is error free when we follow the Nyquist • Quantization always has some error.

  16. Quantization Error • Let’s look at the error of quantizing the numbers 1-100 using various numbers of bits…

  17. 2-bit Quantization

  18. 3-bit Quantization 99/7 = 14.1429…

  19. 4-bit Quantization 99/15= 6.6

  20. 5-bit Quantization 99/31 = 3.194…

  21. 6-bit Quantization 99/63 = 1.571…

  22. Quantization Error • The error introduced when reconstructing a signal • Given an N-bit quantization over a range, [a,b], what is the maximum error? Hint, think in terms of

  23. Quantization Error over [1,100]

  24. Linear vs. Non-linear Quantization • So far we’ve dealt with linear quantization • There are other ways we might quantize data

  25. Non-linear Quantization

  26. Non-linear Quantization

  27. Non-linear Quantization • How should we change our classifier and our reconstruction rule? • Hint:

More Related