1 / 17

Baku, 23.05.2013

DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES. M. Hübel , Dr. J . Nocke, Prof. E. Hassel University of Rostock Institute of Technical Thermodynamics. Baku, 23.05.2013. Overview. Motivation Reference PowerPlant

keiran
Download Presentation

Baku, 23.05.2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES M. Hübel, Dr. J. Nocke, Prof. E. Hassel University of Rostock Institute of Technical Thermodynamics Baku, 23.05.2013

  2. Overview • Motivation • Reference PowerPlant • Simulation and Validation • ExampleResults • Outlook Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

  3. Motivation German Electric Energy System 2020 Installed Capacities Photovoltaic: ~ 50 GW Wind: ~ 55 GW Consumer Load Maximum: ~ 80 GW Average: ~ 60 GW GRID FREQUENCY indicats deviations in the energy balance http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

  4. Motivation German Electric Energy System 2020 Annual Production Photovoltaic: ~ 50 TWh Wind: ~ 120 TWh Annual Consumption ~ 600 TWh/a GRID FREQUENCY indicats deviations in the energy balance http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

  5. Motivation German Electric Energy System 2020 Annual Production Photovoltaic: ~ 50 TWh Wind: ~ 120 TWh Annual Consumption ~ 600 TWh/a GRID FREQUENCY indicats deviations in the energy balance Fossil: >300 TWh http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

  6. Motivation Role of Fossil Power Plants in the German Electric Energy System • Most of our consumed electric energy is from thermal power plants – today and in the next decades • Some grid services, e.g. Primary Control can currently be done only by thermal power plants • (too) little investments for modernization and optimization within this sector – high potential for optimization METHODE: Dynamic Modeling GOAL: Flexible power plants P Gradmax Pmin Decreasing Minimum Load Increasing Load Gradients • Identify restrictions • Develop optimization strategies • Comparison of scenarios t Operating Schedule Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

  7. Reference Power Plant Jänschwalde Block D • Year of commissioning: 1985 • combustible: lignite • generator output: 530 MW • Efficiency: 36% • live steam • mass flow rate: 2x230 kg/s • pressure: 162 bar • temperature: 535 °C C1 C2 D1 D2 Block C Block D Werk Y2 Lehrstuhl für Technische Thermodynamik – Dynamische Modellierung des Kraftwerks “Jänschwalde”

  8. Overview on Power Plant / Model Structure Boiler Turbine Condensator LP-Preheaters Feedwater System HP-Preheaters Lehrstuhl für Technische Thermodynamik – Dynamische Modellierung des Kraftwerks “Jänschwalde”

  9. Fundamental equations Outlet massflow Outlet enthalpy flux Mass balance Energy balance Momentum balance Heat transfer Inside wall at boundary layer according Fouriers α determined by Dittus-Boelter heat transfer equation (1-phase flow) or Chen-correlation (2-phase flow) Outlet p Toutside Tinside TFluid Δ p heat flux Inlet p Inlet massflow Inlet enthalpy flux

  10. Simulation and Validation Input Data Results Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

  11. Simulation and Validation Power Output P Generator P Generator Simulated Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

  12. Simulation and Validation Boiler Temperatures Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

  13. Simulation and Validation Preheater Temperatures Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

  14. Simulation and Validation Preheater Temperatures Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

  15. Example Results Fatigue in components for the reference scenario Result • Fartigueforthecomponentsvariesbetween 0,0008 and0,0051 % forthereferencescenario • Evaporator andSuperheater 2 arecriticalcomponents in dynamicoperation • Conclusion • Same inputscenariodones not leadto same fatiguebecauseof different temperatuesand different geometries Fartigueof Headers

  16. Outlook Lastgradient Load gradient Scenarios 2.5%, 4%, 6% Mindestlast Min load scenarios 50%, 37.5%, 33%, 20 % different operationmodes Simulation ofcriticalloadand wind scenariosundervariationofloadgradient, min loadof PP Jänschwaldeoroperationofthe power plant in specialmode Stillstand Gradmax Pmin operation parameters special operation modes „shut down & restart“ „reduce to circulation mode“ Institute of Technical Thermodynamics – Effects of fluctuating Wind Power on Power plant operation

  17. Thankyouforyourattention! Dipl.-Ing. M. Hübel Dr.-Ing. J. Nocke Prof. Dr.-Ing. E. Hassel Andthankstooursponsorsforfinancialsupport Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

More Related