380 likes | 555 Views
Joël Chevrier. Micromechanics and measurements of interactions at nanoscale from Gauthier Torricelli PhD thesis. LEPES-CNRS Laboratoire d'Études des Propriétés Électroniques des Solides Université Joseph Fourier Grenoble France ESRF Surface Science Laboratory.
E N D
Joël Chevrier Micromechanics and measurements of interactions at nanoscale from Gauthier Torricelli PhD thesis LEPES-CNRS Laboratoire d'Études des Propriétés Électroniques des Solides Université Joseph Fourier Grenoble France ESRF Surface Science Laboratory
Vibrating Si microlever at resonance frequency Vacuum, T=300K Atomic Force Microscopy AFM • Casimir interaction: • plasma length lP≈100nm Cf groupe Capasso Cf groupeFischbach
MEMS et NEMS (Micro et Nano electro-mechanical systems) e=160 nm L=2 mm l=200 nm For NEMS: relevant forces? van der Waals/Casimir electrostatic forces chemical bonding hard core repulsion Brownian motion (kBT) Dissipation-Fluctuation dynamical measurement AFM Raphaëlle Dianoux coll. LETI/ESRF/LEPES
R 3 p c R h SP = F R Cas z 3 360 z van der Waals/Casimir interaction : Proximity approximation
A. Lambrecht et al. Eur. Phys. J. D, 8, 309 (2000) van der Waals Hamaker Real mirrors (electronic properties) No characteristic distance Force gradient No characteristic distance Varying Hamaker constant...
Van der Waals Casimir : perfect mirrors lp≈136 nm Casimir/van der Waals force gradient Calculation of Grad F in this geometry performed by Lambrecht et al (dark line) Vacuum gold-gold vibration at resonance
Determination of Force Gradient • Casimir/van der Waals • method: • Static • Dynamic: oscillator at resonance • k, w absolute values • absolute distance (no direct contact allowed) • surface potential • noise-sensibility
Force measurement by AFM Atomic Force Microscopy Expérimental SetupOmicron UHV STM/AFM
Gold film deposition on sphere and cantilever (Nanofab K. Ayadi) Evaporated gold : Ti thin film 2-10nm Au thin film ~200-300nm gold layer thick enough so that it is equivalent to bulk
Measurement Strategy 1-electrostatic calibration 2-DV=0 no average surface potential vdw/Casimir measurement ?
V Z Amplitude phase shift Fréquency shift Dissipation 1-Lock-in 2- PLL (FM modulation) 3-Sx(w)(ADC+calcul) Laser Piezo-excitation Photo détecteur divided in 4 sectors Microlevier (k, w)
sphere surface interaction DV=0 (Casimir) Z≈100nm Linear OK Small amplitude Small amplitude: linear approximation valid
DV=0 (Casimir) Z≈100nm sphere surface interaction Strong non linear effect Large hysteresis Larger amplitude larger amplitude: linear approximation NOT valid Cf Capasso et al work
Measure of the resonance frequency shift in order to investigate the DV=0 régime i.e. van der Waals/Casimir • Three methods: • 1- Direct measure of the resonance curve: amplitude/phase • 2- Frequency Modulation FM-AFM: double feedback loop • Amplitude of oscillation = cte • true w resonance followed real time 3- Lever Excitation: Brownian Motion at T=300K
Method I: Direct measurement of resonance curves Long preliminary work: surface potential, k, z0
1 Method I: Frequency shift issued from direct measurement of resonance curves DV=0.5V
1 60nm Vdw limit DV=0V Casimir Casimir limit No ajustable parameter
Constant Vibration Amplitude Frequency modulation Excitation Frequency = Resonance Frequency Method II: FM-AFM measure K determination k=60,5 N/m DV=0.5V DV=0V VDW/Casimir Absolute distance: adjustable parameter
Method III: Excitation: Brownian motion Small amplitude of vibration DV=0V VDW/Casimir as Z decreases
Frequency shift versus distance deduced from the Brownian motion Calculated curve: absolute distance origine is here adjusted
Conclusion: • vdw/Casimir acts as a perturbation on a micro-oscillator • three different methods in the determination of the frequency shift • Dynamical measures on the range 50 to 200 nm : • AFM Dynamical measurements in the linear régime • Clear separation of : • the electrical contribution (DV≠0) • the contribution with voltage compensation(DV=0 ± 0,01 V): • van der Waals/Casimir • Force gradient measured on 3 orders of magnitude (N/m) • Quantitative observation of the intermediate régime • between the 2 limiting régimes: van der Waals and Casimir • in the vicinity of the plasma length lp Problems specially at short distances: important drift roughness lever static deflection non linearity (including in Brownian motion) At distances above 200 nm: insufficient sensibility (higher quality factor, low T,...)
Toward Observation of dissipative processes…. • Increase of the resonance width • increased dissipation • fluctuation
spectral density f : friction coefficient fluctuation - dissipation theorem
Z Z • As Z decreases,changes of Lorentz curve: • the frequency decreases • the witdth increases: dissipation!
1rst dissipative channel: Johnson Noise large distance short distance Z Z DV ≠0 • DV ≠ 0 dissipation increases • DV=0 NO increase of dissipation electromechanical coupling
Johnson noise : vJ fluctuating voltage due to resistance R RCw0<<1 fluctuation-dissipation theorem Coupling of oscillator with thermal bath
Predicted: DV ≠ 0dissipation increases as z-2 DV = 0 NO increased dissipation!! Result: sphere plan capacity : R: ajusted parameter
2nd dissipative channel Sphere plane distance around 50nm and in vdw/Casimir regime No external excitation… Brownian motion Sphere radius=40000 nm DV=0 i.e. compensation du potentiel de surface
large distance Z=54nm Z=34nm Z=42nm • As Z decreases: • w0decreases • Dw rapidly increases!!! Rapid increase of dissipation in vdw/Casimir regime
Peak width Distance calibration based on Frequency shift
Origin of this dissipative process? • Surface voltage reduced to zero • vacuum (10-9mbar). • No contact between sphere and surface (sign of frequency shift Dw). • Interaction=Casimir possible origins: - drift of apparatus combined with: -long measurements-strong force gradient - results in drifting resonance frequency... - Brownian motion:sphere/plane coupled through the fluctuating thermal EM field (Dorofeyev, Fuchs et al PRL1999, Stipe, Rugar et al PRL2001) -…?
Conclusion: two dissipative channels observed using the resonance curves
in progress: a new machine 1 2 6 4 3 5 1- Longue distance: Fabry-Pérot interferometer for both dynamic and static measurement Vacuum Low temperature Casimir Radiation pressure: optic, X ray Project See poster Guillaume Jourdan
PhD thesis LSP/LEPES F. Martins Postdoc CNRS M.Stark
Remerciements Guillaume Jourdan (LEPES-LKB) Mario Rodrigues (ESRF) Martin Stark (LEPES-LSP) Serge Huant (LEPES-LSP) Khaled Ayadi (LEPES) Florence Marchi (LEPES-UJF) Astrid Lambrecht (LKB) Irina Snigereva (ESRF) Fabio Comin (ESRF) Joël Chevrier (LEPES-UJF-ESRF) Merci à tous pour votre attention… Static measurement: Torricelli poster Fabry Pérot interferometer: Jourdan poster