1 / 30

Star Formation from Herschel deep surveys

Star Formation from Herschel deep surveys. B. Altieri, on behalf of PEP ( PACS Extragalactic Probe, PI D. Lutz ) GT Key Program consortium GOODS-Herschel (PI, D. Elbaz) OT Key program Elbaz+11, Popesso+11, Rodighiero+11, Mullaney+11. Importance of the FIR & submm.

keita
Download Presentation

Star Formation from Herschel deep surveys

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Star Formation from Herschel deep surveys • B. Altieri, on behalf of • PEP (PACS Extragalactic Probe, • PI D. Lutz ) GT Key Program consortium • GOODS-Herschel (PI, D. Elbaz) OT Key program • Elbaz+11, Popesso+11, Rodighiero+11, Mullaney+11

  2. Importance of the FIR & submm • Half of the energy created in the Universe since the CMB has been reprocessed into the IR • Herschel covers the IR peak and pushes into the submillimetre Credit: WMAP

  3. GOODS-Herschel (Herschel Open Time Key Program)The Great Observatories Origins Deep Survey : far IR imaging with Herschel Deepest images of the sky in the 2 GOODS fields : 1818 sources down to 1 mJy at 100 mm, 2.6 mJy@160mm, 5mJy@250mm, 8mJy@350mm, 10mJy@500mm X UV U B V I Z J H K 3.6m 4.5m 5.8m 8m IRS16 MIPS24radio 2x10-16erg/s/cm2~28AB 22AB ~1Jy 50Jy 20Jy12Jy Collaborators (60):Fr, US, G, UK, Gr, It, Can, ESO, ESA 362.6 hours (100m & 160m PACS + 31h SPIRE) Herschel:350 cm 70% complete spec z ~30% phot z • cosmic SFR density : normal galaxies up to z ∼ 1, LIRGs up to z∼ 2, ULIRGs to z~4 • bridge IR and UV up to z ∼ 1.5 ... 4 • identify missing obscured AGNs making the missing cosmic X-ray background (30 keV) GOODS-North GOODS-South 100160 250 24100160 10'x15' 10'x10'

  4. GOODS-Herschel (Herschel Open Time Key Program)The Great Observatories Origins Deep Survey : far IR imaging with Herschel Deepest images of the sky in the 2 GOODS fields : 1818 sources down to 1 mJy at 100 mm, 2.6 mJy@160mm, 5mJy@250mm, 8mJy@350mm, 10mJy@500mm X UV U B V I Z J H K 3.6m 4.5m 5.8m 8m IRS16 MIPS24radio 2x10-16erg/s/cm2~28AB 22AB ~1Jy 50Jy 20Jy12Jy Collaborators (60):Fr, US, G, UK, Gr, It, Can, ESO, ESA 362.6 hours (100m & 160m PACS + 31h SPIRE) Herschel:350 cm 70% complete spec z ~30% phot z 70% complete spec z ~30% phot z • cosmic SFR density : normal galaxies up to z ∼ 1, LIRGs up to z∼ 2, ULIRGs to z~4 • bridge IR and UV up to z ∼ 1.5 ... 4 • identify missing obscured AGNs making the missing cosmic X-ray background (30 keV) GOODS-North GOODS-South 100160 250 24100160 10'x15' 10'x10'

  5. The mid-IR excess problem... SED evolution/AGN/k-correction ?... • mir and far IR consistent with local SEDs (Chary & Elbaz 01) up to z~1.5 • (blue,green dots) • at z>1.5: "mid-IR excess" (Daddi +07, Papovich +07) • (orange, red dots) LIR (Herschel) CE01 Elbaz +10, 11, Nordon +10 LIR(from 24mm using CE01)

  6. The mid-IR excess problem... SED evolution/AGN/k-correction ?... Elbaz +11 LIR (Herschel) LIR (Herschel) LIR(from 24mm using CE01) L8(rest-frame from Spitzer)

  7. IR main sequence : 2 modes of star formation ? Elbaz +11

  8. IR main sequence : the role of SF compactness >3x1010 Lkpc-2 • radio size NVSS & FIRST 20cm: 1" ~0.5 kpc res° • 13.2mm compactness : 3.6" ~1.7 kpc resolution • Spitzer-IRS spectroscopy (spatial profile along slit) & IRAC-8mm imaging (Diaz-Santos +10) Elbaz +11

  9. IR8 = LIR / L8 IR main sequence : the role of SF compactness LIR (IRAS) SIR L8(rest-frame) Local Elbaz +11

  10. Galaxies with an excess in IR8, IR surface brightness and sSFR are the same ! high IR8 ~ compact starbursts SFR LIR (IRAS) M* L8 RSB=sSFR/sSFR(Main Seq.) sSFR= SFR/ M* (Gyr-1) SIR IR8 = LIR / L8

  11. SF in distant excess IR8 galaxies is more compact in rest-frame UV HST ACS-B(4350Å) @z~0.7  2700Å HST ACS-V(6060Å) @z~1.2  2700Å HST ACS-I(7750Å) @z~1.8  2700Å

  12. Proto-typical IR SED of Main Sequence and Starburst galaxies Main Sequence Starburst (high IR8, sSFR) Nordon +11 Starbursts : peaked far-IR bump 45 – 50 K, weak PAH features, ISM= 0 %, SF= 100 % SED Main Sequence : broad far-IR bump 15 – 50 K, strong PAH features, ISM= 38 %, SF= 62 % SED Model fit: 2 components, "diffuse ISM" and "star forming region" Range of dust temperatures but ISM range wide Tdust(ISM)~ 18 K , Tdust(SF)~ 50 K

  13. IR8=LIR/L8 as a tracer of star formation geometry ( mergers) Galliano +08

  14. Improving the bolometric correction for SF galaxies Unique IR SED for all galaxies: main sequence Elbaz +11

  15. Two modes of star formation ConclusionsTwo • Distant (U)LIRGs = normal star-forming galaxies + large Mgas, long-lasting (Gyrs) • IR8= LIR/L8 universal among star-forming galaxies  geometry of SF regions (robust / fragile dust ratio) • High IR8 values for compact starbursts with high SFR / M* (mergers) • Main Sequence galaxies (disk-like) dominate the cosmic SFR density at all redshifts ! • The fall in cosmic SFR driven by the decrease in gas mass not merger rate • Starbursts= mergers between late-types, ~10% of cosmic SFR density • IR SED for MS and SB galaxies  bolometric correction •  LIRG = SB at z~0 but MS at z~1 if M*>5x1010 M (ULIRG@z=2 , M*>2x1011 M) • IR dominated by star formation in AGNs (LX<1042-44 erg s-1) Next: improve SED library by bins in sSFR, IR8, Lir

  16. The Σ(SFR)/M ~z relation up to z~1.6 Black points: clusters Magenta points: groups Red star: the Bullet cluster Blue region: field galaxy halos

  17. The Σ(SFR)/M ~z relation up to z~1.6 • Conclusions: • pre-processing ruled out • quenching effect takes place after merger/accretion (likely environmental) • Reversal of SFR-density at z> 1.5

  18. The Σ(SFR)/M ~z relation up to z~1.6 Cluster desert Future: HSC GT1 and hopefully OT2 time to search for proto-clusters + 100h of Herschel/PACS (PI P. Popesso) to observe 8 groups/clusters in the cluster desert at 1.5 < z < 2

  19. Star Formation from Herschel deep surveys • B. Altieri, on behalf of • PEP (PACS Extragalactic Probe, • PI D. Lutz ) GT Key Program consortium • GOODS-Herschel (PI, D. Elbaz) OT Key program • Elbaz+11, Popesso+11, Rodighiero+11, Mullaney+11

  20. Document title | Author Name | Place | Data doc | Programme | Pag. 22

  21. Searching for buried AGNs with IR8 deboosted from starburstiness X-ray AGNs Power-law AGNs high IR8 : 15%  19% low IR8 : 33%  70% high & low IR8 : ~11%  ~22%

  22. Searching for buried AGNs with IR8 deboosted from starburstiness 2% +15% src with high IR8 17% 25%

  23. what is the redshift by which half of the stars that we see today were formed ? • (Peebles 1988, The epoch of galaxy formation) • z 0 – 2.5 2.5 – 5 5 - ∞ • votes in 1988 28 54 4 ~85 % ~15% <5% (% age after recombination) rSFR (Myr-1Mpc-3) 8% z~3 15% z~2 50% z~1 redshift rstar (MMpc-3) Marchesini +09 redshift Le Borgne, Elbaz, Ocvirk, Pichon 10

  24. Star Formation from Herschel deep surveys • B. Altieri, on behalf of • PEP (PACS Extragalactic Probe, PI D. Lutz ) GT Key Program consortium • GOODS-Herschel (PI, D. Elbaz) OT Key program • Elbaz+11, Popesso+11, Rodighiero+11, Mullaney+11

  25. GOODS-Herschel (Herschel Open Time Key Program)The Great Observatories Origins Deep Survey : far IR imaging with Herschel Deepest images of the sky in the 2 GOODS fields : 1818 sources down to 1 mJy at 100 mm, 2.6 mJy@160mm, 5mJy@250mm, 8mJy@350mm, 10mJy@500mm X UV U B V I Z J H K 3.6m 4.5m 5.8m 8m IRS16 MIPS24radio 2x10-16erg/s/cm2~28AB 22AB ~1Jy 50Jy 20Jy12Jy Collaborators (60):Fr, US, G, UK, Gr, It, Can, ESO, ESA 362.6 hours (100m & 160m PACS + 31h SPIRE) Herschel:350 cm 70% complete spec z ~30% phot z • cosmic SFR density : normal galaxies up to z ∼ 1, LIRGs up to z∼ 2, ULIRGs to z~4 • bridge IR and UV up to z ∼ 1.5 ... 4 • identify missing obscured AGNs making the missing cosmic X-ray background (30 keV) GOODS-North GOODS-South 100160 250 24100160 10'x15' 10'x10'

  26. The ‘infrared main sequence’ for star-forming galaxies • Main Sequence galaxies (disk-like) dominate the cosmic SFR density at all redshifts ! • The fall in cosmic SFR driven by the decrease in gas mass not merger rate Elbaz+ 2011 Document title | Author Name | Place | Data doc | Programme | Pag. 28

  27. The typical Spectral Energy Distribution of main-sequence and starburst galaxies: 2 modes of star formation 10% 90% Starbursts= mergers between late-types, ~10% of cosmic SFR density

  28. Conclusions • Distant (U)LIRGs = normal star-forming galaxies + large Mgas, long-lasting (Gyrs) • IR8= LIR/L8 universal among star-forming galaxies  geometry of SF regions • High IR8 values for compact starbursts with high SFR / M* (mergers) • Main Sequence galaxies (disk-like) dominate the cosmic SFR density at all redshifts ! • The fall in cosmic SFR driven by the decrease in gas mass not merger rate • Starbursts= mergers between late-types, ~10% of cosmic SFR density • IR SED for MS and SB galaxies  bolometric correction •  LIRG = SB at z~0 but MS at z~1 if M*>5x1010 M (ULIRG@z=2 , M*>2x1011 M) • IR dominated by star formation in AGNs (LX<1042-44 erg s-1) TBD: improve SED library by bins in sSFR, IR8, Lir

More Related