1 / 7

已知:

先回顾等比数列前 n 项求和公式的推导. 通项公式 :. n -1. …. a 1 q. = a 1 +a 1 q + + + +. a 1 q. a 1 q. 2. 3. a n= a 1 •. 作 减 法. 作 减 法. 作 减 法. 等比数列 { a n} ,. a 1 ,. q ,. n- 1. n. q. 已知:. q s n +. 求: S n.

Download Presentation

已知:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 先回顾等比数列前n项求和公式的推导 通项公式: n-1 … a1q =a1+a1q + + + + a1q a1q 2 3 an=a1• 作 减 法 作 减 法 作 减 法 等比数列 {an}, a1, q, n-1 n q 已知: qsn + 求:Sn (1-q)Sn=a1-a1q n { =a1q + + + Sn= a1q a1q a1q n n-1 2 3 … + a1q (q=1) (q=1) 解:Sn=a1+a2+ a3 +a4 + …+an n·a1

  2. 运用条件:若数列{ Cn}满足 Cn = an · bn,其中{an}为等差数列, { bn} 为等比数列且公比为q,则数列{ Cn}的前n项和可用“错位相减法”求之。 • 基本步骤为:先写出Sn,再求出qSn,然后求“Sn - qSn”。但须注意书写时“同类项”要对齐,即要“错位”,以便求差。

  3. 77···7 77···7 77···7 77···7 7+7+7···+7 77···7 n个 n个 n-1个 n个 n个7 n个 解:∵Sn = 7+ 77+ 777 + ··· + , ∴10 Sn =70+770+ ··· + ×10 + ×10 ∴ Sn- 10 Sn = - ×10 例一、求数列7,77,777,···, ,··· 的前n项的和 分析:该数列的特点是从第2项起数列的每一项是它前一项的10倍加7,故可尝试先将和式乘以10后再与原式相减。

  4. =7n – 7(10n-1) × • 【导评】从上面的解题过程可以看出:如果一数列{an}满足an+1=k an +p (k, p为常数),即从第2项起每一项是它前面一项的k倍加上p,则该数列的前n项求和用上述方法求之。 • 【基本步骤】先写出Sn,再求出kSn,最后求“Sn- kSn”。

  5. (1-a)Sn=1+2a+2a2+2a3+ ··· +2an-1- (2n-1)an =2(1+a+a2+a3+ ··· +an-1) - (2n-1)an-1 = • 例二、求数列1,3a,5a2,7a3 ··· (2n-1)an-1 ··· (a≠1) 的前n项的和 解:因Sn=1+3a+5a2+7a3+ ··· +(2n-1)an-1 ① ①×a,得 aSn=a+3a2+5a3+ ··· (2n-3)an-1+(2n-1)an 两式相减得

  6. 【另】如将常数1提出,则: 所以 计算结果与之前相同。

  7. 由此可知,作差后所得数列中,如有常数项,可以凑成等比数列的项,也可以独立提出来,并不影响计算结果。由此可知,作差后所得数列中,如有常数项,可以凑成等比数列的项,也可以独立提出来,并不影响计算结果。

More Related