980 likes | 1.96k Views
Basic MOS Device Physics. Topics. MOS Structure MOS IV Characteristics Second Order Effects MOS Device Models. NMOS Structure. L D is caused by side diffusion. Substrate contact--to reverse bias the pn junction Connect to most negative supply voltage in most circuits.
E N D
Topics • MOS Structure • MOS IV Characteristics • Second Order Effects • MOS Device Models
NMOS Structure LD is caused by side diffusion Substrate contact--to reverse bias the pn junction Connect to most negative supply voltage in most circuits. Source: the terminal that provides charge carriers. (electrons in NMOS) Drain: the terminal that collects charge carriers.
CMOS Structure Connect to most positive supply voltage in most circuits. Reverse bias the pnjunction Reverse bias the pnjunction PMOS NMOS
Symbols This textbook In Digital Circuits
MOS IV Characteristics • Threshold Voltage • Derivation of I/V Characteristics • I-V curve • Transconductance • Resistance in the linear region • Second Order Effect • Body Effect • Channel Length Modulation • Subthreshold conduction
Threshold Voltage 1. Holes are expelled from the gate area Depletion region (negative ions) is created underneath the gate. No current flows because no charge carriers are available.
Threshold (2) Two capacitors in series: Cox: capacitance between the gate and oxide/silicon interface Cdep: capacitance of the depletion region As VG increases, the potential at the oxide/silicon increases.
Threshold Voltage (3) When the surface potential increases to a critical value, inversion occurs. No further change in the width of the depletion region is observed. A thin layer of electrons in the depletion region appear underneath the oxide. A continuous n-type (hence the name inversion) region is formed between the source and the drain. Electrons can no be sourced from S and be collected at the drain terminal. (Current, however, flows from drain to source) Further increase in VG will frutherincrase the charge density. The voltage VG required to provide an inversion layer is called the threshold voltage.
Body Effect The n-type inversion layer connects the source to the drain. The source terminal is connected to channel. Therefore, A nonzero VSB introduces charges to the Cdep. The math is shown in the next slide. A nonzero VSB for NFET or VBS for PFET has the net effect Of increasing the |VTH|
W/L=12 um/0.12um CMOS: 0.13 um process VDS=50 mV Simulator: 433 mV Alternative method: 376 mV
Subthreshold current Subtreshold region As VG increases, the surface potential will increase. There is very little majority carriers underneath the gate. There are two pn junctions. (B-S and B-D) The density of the minority carrier depends on the difference in the voltage across the two pn junction diode. A diffusion current will result the electron densities at D and S are not identical.
Threshold Voltage • VG=0.6 V • VD=1.2 V • CMOS: 0.13 um • W/L=12um/0.12 um • NFET
Implantation of p+ dopants to alter the threshold Threshold voltage can be adjusted by implanting Dopants into the channel area during fabrication. E.g. Implant p+ material to increase threshold voltage.
Formation of Inversion Layer in a PFET The VGS must be sufficient negative to produce an inversion layer underneath the gate.
Channel Charge A channel is formed when VG is increased to the point that the voltage difference between the gate and the channel exceeds VTH.
MOSFET as a variable resistor The conductive channel between S and D can be viewed as resistor, which is voltage dependent.
Application of VDS What happens when you introduce a voltage at the drain terminal?
Channel Potential Variation E.g. VS=0, VG=0.6, VD=0.6 At x=0, VG-VX=0.6 (more than VTH) At x=L, VG-VX=0 (less than VTH) VG-VX is reduced as you move from S to D. VX the voltage along the channel VX increases as you move from S to D.
Pinch Off Linear Region Small VDS Saturation Region Large VDS Electrons reaches the D via the electric field in the depletion region No channel
Conceptual Visualization of Saturation and Triode(Linear) Region NMOS PMOS
I-V Characteristic Equations for NMOS transistor To produce a channel (VGS>VTH) (Triode Region: VDS<VGS-VTH) Saturation:VDS>VGS-VTH
MOSFTE as a controlled linear resistor Take derivative of ID with respect to VDS For small VDS, the drain resistance is
Example Ron=233.625 Ohms VS=100/(100+233.625)*100 mV=29.97 mV
Transistor in Saturation Region • I-V characteristics • Transconductance • Output resistance • Body transconductance
Transconductance Analog applications: How does ids respond to changes in VGS?
IDS vs VGS 0.13 um NMOS VDS=0.6 V W/L=12um/0.12 um VB=VS=0 Y axis: ids X axis: Vgs
Transconductance in the triode region (Triode region) For amplifier applications, MOSFETs are biased in saturation
gm as function of region 0.13 um NMOS VGS=0.6 V W/L=12um/0.12 um VB=VS=0 Y axis: gm X axis: vds saturation linear
Channel Length Modulation As VDS increases, L1 will move towards the source, since a larger VDS will increase VX . L is really L1 ID will increase as VDS increases. The modulation of L due to VDS is called channel length modulation.
Controlling channel modulation For a longer channel length, the relative change in L and Hence ID for a given change in VDS is smaller. Therefore, to minimize channel length modulation, minimum length transistors should be avoided.
gds 0.13 um NMOS VGS=0.6 V W/L=12um/0.12 um VB=VS=0 Y axis: gm X axis: vds Slope due to channel length modulation saturation linear
More on Body Effect • Example • Analysis • gmbs
Variable S-B Voltage constant
VTH as a function of VSB Body effect coefficient VSB dependent (VTH0: with out body effect)
Sensitivity of IDS to VSB gm (chain rule) η=1/3 to 1/4, bias dependent
Small Signal Model • If the bias current and voltages of a MOSFET are only disturbed slightly by signals, the nonlinearamdlarge signal model an be reduced to linear and small signal representation.