240 likes | 492 Views
多体共鳴状態の境界条件によって解析した 3α 共鳴状態の構造. C. Kurokawa 1 and K. Kato 2 Meme Media Laboratory, Hokkaido Univ., Japan 1 Div. of Phys., Grad. Sch. of Sci., Hokkaido Univ., Japan 2. Theoretical studies of 12 C. D.M.Brink in Proceedings of the Fifteen Solvay Conference on Physics (19070)
E N D
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造多体共鳴状態の境界条件によって解析した3α共鳴状態の構造 C. Kurokawa1 and K. Kato2 Meme Media Laboratory, Hokkaido Univ., Japan1 Div. of Phys., Grad. Sch. of Sci., Hokkaido Univ., Japan2
Theoretical studies of 12C D.M.Brink in Proceedings of the Fifteen Solvay Conference on Physics (19070) ○Microscopic 3α model (RGM・GCM・OCM) Y.Fukushima and M.Kamimura in Proceedings of the International Conference on Nuclear Structure (1977) M.Kamimura, Nucl. Phys. A351(1981),456 Y.Fujiwara, H.Horiuchi, K.Ikeda, M.Kamimura, K.Katō, Y.Suzuki and E.Uegaki, Prog Theor. Phys. Suppl. 68 (1980)60. E.Uegaki, S.Okabe, Y.Abe and H.Tanaka, Prog. Theor. Phys. 57(1977)1262; 59(1978)1031; 62(1979)1621. H.Horiuchi, Prog. Theor. Phys. 51(1974)1266; 53(1975)447. K.Fukatsu, K.Katō and H.Tanaka, Prog. Theor. Phys.81(1988)738. ○3α+p3./2Closed shell N.Takigawa, A.Arima, Nucl. Phys. A168(1971)593. N.Itagaki Ph.D thesis of Hokkaido University (1999) Y.Kanada-En’yo, Phys. Rev. Lett. 24(1998)5291. ○Deformation (Mean-Field) G.Leander and S.E.Larsson, Nucl. Phys.A239(1975)93. ○Faddeev Y.Fujiwara and R.Tamagaki Prog. Theor. Phys. 56(1976)1503. H.Kamada and S.Oryu, Prog. Theor. Phys 76(1986)1260. α α α 31- Γ=34keV α 02+ α Γ=8.7eV 3 α 01+ Excited states of cluster states?
0+, 2+ Situation around Ex= 10 MeV Energy level of 12C a l=0 02+ : a L=0 a Alpha-condensed state A.Tohsaki et al., PRL87(2001)192501 Can 3αModel reproduce both of the 22+ and the 03+ states ? What kind of structure dose the 03+ state have ? Why 03+ has such a large width ? 0+ : Er=2.7+0.3 MeV, G= 2.7+0.3 MeV 2+ : Er=2.6+0.3 MeV, G= 1.0+0.3 MeV [Ref.]: M.Itoh et al., NPA 738(2004)268 [Ref.] E.Uegaki et al.,PTP57(1979)1262 Boundary condition for three-body resonances Analysis of decay widths
Our strategy In order to taking into account the boundary condition for three-body resonances, we adopted the methods to 3 Model; • Complex Scaling Method (CSM) [Ref.] J.Aguilar and J.M.Combes, Commun. Math. Phys., 22(1971),269 E.Balslev and J.M.Combes, Commun. Math. Phys., 22(1971),280 • Analytic Continuation in the Coupling Constant [Ref.] V.I.Kukulin, V.M.Krasnopol’sky, J.Phys. A10(1977), combined with the CSM (ACCC+CSM) [Ref.] S.Aoyama PRC68(2003),034313 Both enables us to obtain not only resonance energy but also total decay width
a2 a2 a2 a1 a1 a1 c=3 c=1 c=2 a3 a3 a3 Model : 3 Orthogonality Condition Model (OCM) folding for Nucleon-Nucleon interaction(Nuclear+Coulomb) [Ref.]:E. W. Schmid and K. Wildermuth, Nucl. Phys. 26 (1961) 463 , -parity ) μ=0.15 fm-2 : OCM [Ref.]: S.Saito, PTP Supple. 62(1977),11 Phase shifts and Energies of 8Be, and Ground band states of 12C , [Ref.]: M.Kamimura, Phys. Rev. A38(1988),621
Exp. Broad state Methods for treatment of three-body resonant states • CSM It is sometimes difficult for CSM to solve states with quite large decay widths due to the limitation of the scaling angle and finite basis states. In order to search for the broad 0+ state, we employed … • ACCC+CSM 2θ k Im(k) δ→0 : Atractive potential with < 0 Re(k) Resonance
03+: Er=1.66 MeV, Γ=1.48 MeV 22+: Er=2.28 MeV, Γ=1.1 MeV 0+ : Er=2.7+0.3 MeV, G= 2.7+0.3 MeV 2+ : Er=2.6+0.3 MeV, G= 1.0+0.3 MeV [Ref.]: M.Itoh et al., NPA 738(2004)268 Energy levels obtained by CSM and ACCC+CSM G= 0.375+0.040 MeV Γ=0.12 MeV (2+) ACCC+CSM 3α Model reproduce 22+ and 03+ in the same energy region by taking into account the correct boundary condition E.Uegaki et al.,PTP(1979)
Structures of 0+ states through Amplitudes Wave function of 0+ states Y(12C) Jp=0+ = al=0,L=0j0,0 + al=2,L=2j2,2 + al=4,L=4j4,4 8Be jl,L= [ 8Be (l) x L ] a l a al,L2: Channel Amplitudes L a Channel Amplitudes of 01+, 02+ and 04+
Feature of the broad 3rd 0+ state Channel amplitudes as a function of 8Be a l=0 a L=0 2 Dominated 2 a 2 Similar property to 02+( Rr.m.s= 4.29 fm) Re(Rr.m.s) (d= -140): 5.44 fm Large component of a0,02makes suchthe large width. Wave function of 03+ shows similar properties to 02+. 03+ is considered as an excited state of 02+. Higher nodal state of 02+ ?
I=0 I=0 L=0 but higher nodal ? L=0 Summary of obtained 0+ states 04+ 03+ 02+ r.m.s.=4.29 fm
Structure of the 04+ state 4th 0+ state ; Large component of high angular momentum compared with 2nd 0+ a0,02 =0.499,a2,22 =0.307,a4,42 =0.194 Total decay width is sharp: Er=4.58 MeV, =1.1 MeV • 3αOCM with SU(3) base : K.Kato, H.Kazama, H.Tanaka, PTP 77(1986),185. Component of linear-chain configuration: 56% • AMD: Y.Kanada-En’yo, nutl-th/0605047. FMD: T.Neff, H.Feldmeier, NPA 738(2004), 357. Linear chain like structure is found α α α
Probability Density of 1st 0+ and 4th 0+ states (Preliminary) Probability Density of ’s r1 r2 r1 = r2 = r q12 01+ r [fm] 04+ q12 q12
Summary and Future work • We solve states above 3αthresold energy taking into account the boundary condition for three-body resonant states. • Obtained resonance parameters of many J states reproduce experimental data well. • We obtained broad 3rd 0+ state near the 2nd 2+ state. The state has similar structure to the 2nd 0+ state. It is thus expected to be an excited state of 2nd 0+. • The 4th 0+ state has large component of high angular momentum channel, [8Be (2+) x L=2],and has a sharp decay width. These features reflect the linear-chain like structure of 3αclusters. Members of rotational band built upon the 4th 0+ state ? • How do these states contribute to the real energy ? To investigate it we calculate the Continuum Level Density in the CSM and partial decay widths to 8Be(0+, 2+, 4+)+α in feature. [Ref.] A.T. Kruppa and K. Arai, PLB 431(1998)237 R. Suzuki, T. Myo, and K. Kato, PTP 113 (2005) 1273
Probability Density of 0+ states 04+ 02+ q12
Contributions from resonant states to real energy Continuum Level Density (CLD) Δ(E) [Ref.] S.Shomo, NPA 539 (1992) 17. δl: phase shift Discretization with a finite number N of basis functions [Ref.] A.T. Kruppa and K. Arai, PLB 431(1998)237. Smoothing technique is needed, but results depend on smoothing parameter.
CLD in the Complex Scaling Method[Ref.] R. Suzuki, T. Myo, and K. Kato, PTP 113 (2005) 1273 Bound state Continuum Resonance ER, εc(θ) have complex eigenvalues in CSM CLD in CSM: Smoothing technique is not needed
Application to 3α system CLD of 3αsystem α2 α1
Continuum Level Density: 0+ states 8Be(0+) +α 8Be(2+) +α E [MeV]
Subtraction of contribution from 8Be+α 8Be α2 • α1- α2: resonance + continuum • (α1α2)- α3: continuum α1 α3 • α1- α2: continuum • (α1α2)- α3: continuum
Contributions from 8Be+α are subtracted ‘ 02+ 04+ 03+
Search for broad 0+ state with δ= -150 MeV δ= -110 MeV δ= -50 MeV 03+ 04+ 05+ 04+ 04+ 05+ 03+ δ= -200 MeV δ= -250 MeV 04+ 05+
Trajectories of the broad 03+ state Complex-Energy plane Complex-Momentum plane Obtained resonance parameter
Methods for treatment of three-body resonant states • Complex Scaling Method (CSM) It is sometimes difficult for CSM to solve state with a quite large decay width due to the limitation of the scaling angle . In order to search for the broad 0+ state, we employed … • Analytic Continuation in the Coupling Constant combined with the CSM (ACCC+CSM) ACCC+CSM CSM k k Im(k) Im(k) Branch cut Bound state δ→0 Re(k) Re(k) q Anti-bound state Resonance Resonance