1 / 33

Supernova Cosmology - a status report

Supernova Cosmology - a status report. Marek Kowalski Physikalisches Institut Universität Bonn 2 nd BTCP Workshop 4.10.2010, Bad Honnef. Content. Introduction Current surveys Systematic errors C urrent constraints Future projects. Supernova Type Ia.

kellan
Download Presentation

Supernova Cosmology - a status report

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Supernova Cosmology- a statusreport Marek KowalskiPhysikalischesInstitutUniversität Bonn 2nd BTCP Workshop 4.10.2010, Bad Honnef

  2. Content • Introduction • Currentsurveys • Systematicerrors • Currentconstraints • Future projects

  3. Supernova Type Ia • White dwarf in binarysystem • Masstransfer up to „critical“ Chandrasekharmass of 1.4 M • Thermonuclearexplosion • Explosion of similarenergies • Visiblein cosmicdistances

  4. Stretching the timescale: Correcting the brightness SNeIa as “standard” Candles • Nearby supernovae used to studySNelight curve (z<0.1) • Intrinsically brighter SNe have widerlightcurves.

  5. Simulation of thewidth-brightnessrelation Kasen, Roepke, Woosley, Nature 2009 Kasen, Roepke, Woosley, Nature 2009

  6. Simulation of thewidth-brightnessrelation Kasen, Roepke, Woosley, Nature 2009

  7. Dust Extinction Excesscolor (B-V) Extinction coefficient At least 4 (possible) sources of dust (1) MW dust (β=RB≈4.1) (2)  Host galaxy dust (3)  Intergalactic dust (4)  Dust shell around SN Empiracle approach: fit for β β≈2.5 ≠ RB (i.e. MW dust)

  8. A bit brighter M fainterthen expected normalization SNeIa Hubble Diagram •  M • 1 0 0.72 0.28 0 1 Supernova Cosmology Project (SCP)Kowalski et al. (2008) fainter

  9. SNeIa Hubble Diagram •  M • 1 0 0.72 0.28 0 1 HST Supernova Cosmology Project (SCP)Kowalski et al. (2008) SNLS Essence fainter SDSS PanStarrs PTF SNF CfA

  10. Reference new picture difference Searchingfor Supernovae • One example - the SNLS: • Canadian-French-Hawaii Telescope: 3.6 m • MegaCam Camera: 3.6 108 pixels • four 1 sq deg fields observed every ~4 d • 5-year program finding about 500 SNeIa SN-Candidate

  11. SNLS-Lightcurves

  12. SloanDigitial Sky Survey (SDSS) First year papers: arXiv:0908.4274, arXiv:0908.4276

  13. Sloan Digital Sky Survey

  14. SNe at large Redshifts (z>1) Observations from Space with the Hubble Space Telescopes: + NIR sensitivity

  15. HST Surveyof Clusters with z ≥ 1 Motivation: Large SNe rate dueoverdensities of Galaxies — in particular of nearlydust-freeEarly-types • Cycle 14, 219 orbits (PI S. Perlmutter) 24 clusters fromRCS,RDCS,IRAC, XMM Dawson et al. (SCP), ApJ (2009)

  16. HST Surveyof Clusters with z ≥ 1 Suzuki et al., In preparation

  17. Systematicuncertainties Examplefrom Union2 compilation (Amanullah et al, 2010) Topic of project in B12

  18. Light-curvefitterdifference Kessler et al. (SDSS), 2009 • MLCS2K2: w = -0.76 ± 0.07 (stat) • Trained on low-zdata • Prior on extinction • SALT2: w = -0.96 ± 0.06 (stat) • Trained onlow-z + SNLS data • Empiraclemodelforextinction

  19. Light-curvefitterdifference Originsof the “discrepancy” now well identified • Model rest-frame UV calibration → disappearswithimprovedphotometriccalibration • Treatment of thecolorvariabilityof SNeIa → disappearswhenassumptions(i.e. priors) are dropped (SNLS, submitted 2010) Differencebetweenfitsshouldn‘tbetaken as measure of systematicuncertainty

  20. Host galaxydependence Evidence (4 sigma) forhost stellar massdependence of SN brightnessafterstretch & colorcorrection (Sullivan et al. 2010)

  21. Puttingit all together - the Union2 • 557 SNefrom17 datasets • Consistent lightcurve fits • (SALT2), including sample • dependent pass-band function • Error propagationleadsto • covariancetermsbetweenSNe

  22. CosmologicalParameters  Supernova Cosmology Project Amanullah et al. 2010 Combination of SNe with: BAO (Percival et. al., 2010) CMB (WMAP-7 year data, 2010) For a flat Universe: Ωm= 0.279±0.014(stat) ±0.009(sys) … and with curvature: Ωm= 0.281±0.014(stat) ±0.010(sys) Ωk= -0.004±0.006(stat) ±0.001(sys) M

  23. Equation of state: w=p/ w = -0.997±0.052 (stat) ±0.061 (sys) – flat universe w = -1.035±0.057 (stat) ±0.076 (sys) – curved universe

  24. Constraints as a function of redshift

  25. (Selected)Future Projects Project z-range # SNe Pan-STARRS 0.1-0.5 ~104 DES (2012) 0.1-0.9 ~10 LSST (2018) 0.1-0.9 ~106 JDEM/Euclid (2018?) 0.2-3.0 >3000

  26. The Large SynopticSurveyTelescope 8.4 m diameter 9.6 sq.deg FOV 3.2x109pixels 15 s exposures

  27. LSST: > 105 SNe Ia per year http://www.lsst.org/lsst/scibook

  28. SN Iaphotometricredshifts(fromsimulations) σz=0.007 σμ=0.16 http://www.lsst.org/lsst/scibook

  29. SN cosmology: BAO & DlExample: equation of state w(z)=w0+waxz(1+z)-1 http://www.lsst.org/lsst/scibook

  30. Euclid & Supernovae Astier, Guy & Pain, A&A, accepted (2010) Addingfilter-wheelforopticalchannelwouldallowforextraordinary SN survey 18 monthsurvey (10 & 50 sqdeg) wouldprovidecompetetiveconstraints on darkenergy

  31. Conclusion • Data consistent with cosmological constant • Systematic uncertainties are of similar size as statistical • No show stoppers identified (but lots of work) • Next generation surveys are designed to control systematic errors and can significantly improve on current constraints

  32. Currentsurveys HST SNLS Essence SDSS PanStarrs PTF SNF CfA redshift

More Related