1 / 29

Photocatalytic activity of SBA-15 silica-supported titania photocatalysts

海峽兩岸工程材料研討會 新竹 - 台灣. Photocatalytic activity of SBA-15 silica-supported titania photocatalysts. 王聖璋 Sheng-Chang Wang 南台科技大學 Southern Taiwan University Institute of Nanotechnology, & Department of Mechanical Engineering, Southern Taiwan University, Tainan 710, Taiwan

Download Presentation

Photocatalytic activity of SBA-15 silica-supported titania photocatalysts

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 海峽兩岸工程材料研討會 新竹-台灣 Photocatalytic activity of SBA-15 silica-supported titania photocatalysts 王聖璋 Sheng-Chang Wang 南台科技大學 Southern Taiwan University Institute of Nanotechnology, & Department of Mechanical Engineering, Southern Taiwan University, Tainan 710, Taiwan 洪玲雅 Ling-Ya Hung 、黃肇瑞 Jow-Lay Huang 國立成功大學材料科學與工程學研究所 2007/11/17

  2. 南台科大 Southern Taiwan University Location Solar-cell car Main Gate Campus Nanotechnology center

  3. Photo catalysis • TiO2 : • Solar energy conversion • Catalyst • Environmental pollution remediation Band gap of semiconductors

  4. TiO2 Nanoparticle • Broader energy band gap • Recombination of electron and hole was decreased. • Higher adsorption surface area

  5. Disadvantages and strategies • Problems: • Ultrafine powders will agglomerate into larger particles • adverse effect on catalyst performance • Separation and recovery of TiO2 powders from wastewater are difficult • limitedlight transmission due to scattering • susceptibility to sintering • Strategies • Supported TiO2 composites • High active surface area • UV-Visible transparent, no absorption. • Stable in chemical and thermal atmospheres

  6. Photocatalyst supporter • activated carbon • clays • alumina • Zeolite, pore size < 1.5 nm • Mesoporous SiO2 • MCM-41, CTABr, < 10 nm • SBA-15, PEO20-PPO79-PEO20

  7. Surfactant-templated synthetic SiO2 mesoporous • P123 • Well mesostructural ordering properties • amphiphilic character • low-cost • commercial availability • Biodegradability • thick silica walls organic structure-directing agents PEO20-PPO70-PE020 poly(ethylene oxide)-poly(propylene Oxide)- Poly(ethylene oxide)

  8. TiO2 synthesis by sol-gel method • Ti(OC3H7)4 + 4 H2O  Ti(OH)4+ 4C3H7OH • The high hydrolysis reactivity of TiO2 precursor, TTIP may cause uncontrolled local precipitation • Acetic acid was added to control the hydrolysis speed

  9. Experimental Procedure

  10. SBA-15 • SBA powder: 2 mm (length), 400 nm (diameter) • well-ordered hexagonal mesoporous silica structures, pore size = 6-7 nm • Wall thickness = 5 nm FFT

  11. SAXS of powder SBA-15 • The calcined SBA-15 powder • Three resolved peaks(100), (110), (200) • Well-ordered hexagonal P6mm Structure

  12. N2 adsorption/ desorption isothermsof SBA-15 Types of physisorption isotherms, IUPAC desorption adsorption • P/P0=0.68 – 0.75, Capillary condensation taking place in mesoporoes • Hysteresis loop, Type IV physisorption isotherms, => mesoporous structure • H1 type, uniform spheres in fairly regular array, narrow distributions of pore size.

  13. Pore size distribution • The synthesized SBA-15 with: • Uniform and narrow pore size distribution • Pore size: 6~7nm 20 nm

  14. Pure TiO2 • Particle size • XRD Rutile Anatase • TEM

  15. XRD patterns of TiO2/SBA-15 Anatase : all TiO2/SBA-15 composites Anatase :20%- 60% TiO2/SBA-15 A+R : 80% TiO2/SBA-15 • TiO2 grain size is decrease by supported on SBA-15 • TiO2 Anatase -> Rutile transition temp. from 700 -> 800C

  16. SAXS spectra of TiO2/SBA-15 • SBA-15 hexagonal structure still maintained after loading different amount of TiO2 • Channels of SBA-15 may contain TiO2 particles

  17. N2 adsorption/desorption isothermsof TiO2/SBA-15

  18. TiO2 contents vs. crystal size, pore size, pore volume Pore size Crystalline size Pore volume Specific area

  19. Pore shape evolution • SBA-15: H1 spherical shape • 20-30 %TiO2/SBA: H1~ H2 type • 60% TiO2/SBA: H2, ink bottle shape, some pores are seal with TiO2 particles • 80% TiO2/SBA: H4, plate-like or slit shaped pores, pores are serious sealed with TiO2 particles H1 H2 H4

  20. TiO2/SBA-15 composites 100 nm 20% TiO2/SBA-15 30% TiO2/SBA-15 60% TiO2/SBA-15

  21. HRTEM • TiO2 nanoparticles are embedded in SBA-15 channel • grain size ~ channel’s diameter Ti TiO2 SiO2 EDS DP 100 nm d spacing=0.357nm =>Anatase TiO2 (101) TEM cross-section image

  22. FTIR spectra • 1090 cm-1: Si-O-Si asymmetric stretching • 470 cm-1: Si-O-Sibending mode • 940 cm-1: Si-O-Ti vibration band • TiO2 , peaks int. Titanium incorporating into the framework of silica

  23. XPS • 532.2 eVSi-O-Ti bonding: chemical bonding occur between TiO2-SiO2 • SBA-15: Si-O tetrahedral • TiO2: Ti-O octahedral • More complicated oxygen coordination states appear in TiO2-SBA-15 • Imply that Si-O-Ti would inhibited the phase transition from of anatase to rutile TiO2

  24. UV-Visible spectra • 300 – 350 nm: TiO2 particle size < 5 nm • 350- 400 nm: TiO2 particle size > 5 nm • Absorption edge: blue shift • calcined temp , absorption edge red shift h [Ti3+-O-L]*  [Ti4+-O2-L]

  25. TiO2/SBA-15 formation mechanism +TTIP hydrolysis calcined SBA-15 Amorphous TiO2 Anatase TiO2 Rutile TiO2 TiO2 temp slit shaped pores Ink-like pore spherical pore TiO2 > 60 % T > 800C TiO2 < 60 %T  700C TiO2 30 %

  26. Standard calibration curve of Methylene Blue (MB) Beer’s Law: A=b c A:absorption :proportion constant b: light length c: concentration

  27. Degradation of MB • Langmuir-Hinshelwood ln(C/C0)=kt C0: initial concentration of Methylene Blue k: rate constant • kTiO2 : 0.004 min-1 • k30%TiO2 : 0.027 min-1 • k60%TiO2: 0.023 min-1 • 30 % TiO2/SBA15 has the similar degradation rate with 60 %TiO2/SBA15 0 2 4 6 8

  28. Conclusions • High surface area (500 m2/g), high pore volume (0.55 cm3/g) of TiO2 supported on SBA-15 composites have been obtain. (30 %TiO2/SBA-15 calcined at 700C) • Nanosized of 5 nm TiO2 particles embedded in the channel of the mesoporous silica structures. • The SBA-15 supported TiO2 increased the formation temperature of anatase phase to rutile phase from 700C to 800 C and inhibit the TiO2 grain growth by the occurs of Si-O-Ti bonding. • The pore shape from spherical change to plate-like or slit-shaped by increasing the TiO2 content higher than 30 % in the mesoporous silica structure. • Photocatalytic activity of SBA-15 supported TiO2 composite has 3 time increase than the commercial pure TiO2 nanopowder (P25)

  29. Thanks for your attention SnO nanoflower

More Related