1 / 26

Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC

Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC. ÖPG -Jahrestagung Wien, 28. 9. 2005. B. Epp 1 , V.M. Ghete 2 , E. Kneringer 1 , D. Kuhn 1 , A. Nairz 3 1 Institut f ü r Experimentalphysik, Universit ä t Innsbruck 2 jetzt: Institut f ü r Hochenergiephysik, Ö AW, Wien

kelton
Download Presentation

Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nachweis von B0s-Oszillationen mit dem ATLAS Detektor am LHC ÖPG-JahrestagungWien, 28. 9. 2005 B. Epp1, V.M. Ghete2, E. Kneringer1, D. Kuhn1, A. Nairz3 1Institut für Experimentalphysik, Universität Innsbruck 2jetzt: Institut für Hochenergiephysik, ÖAW, Wien 3jetzt: CERN, Genf

  2. Übersicht über den Vortrag • Einführung • ATLAS Detektor • Theorie, Motivation • Hauptteil • Analyse • Genauigkeit experimenteller Messgrössen • Masse, Zerfallseigenzeit • Monte-Carlo Programm • Amplituden-Scan/Fit • Sensitivität der Analyse • Ausblick • aktuelle Experimente • CDF, D0

  3. ATLAS installation schedule

  4. ATLAS cavern (Sept. 26, 2005) Barrel Toroid

  5. Accuracy on |Vtd| is limited to ~15 %due to theoretical uncertainties. Can determine |Vts|/|Vtd| with ~5 % theoretical uncertainty.

  6. Due to the size of the CKM matrix elements: Dms >> Dmd

  7. Data Challenge 1 software chain

  8. Bs0 Ds + –  • Fully reconstruct Bs decay How to know if an oscillation occurred? _ • Tag Bs or Bs at production and decay • production • sign of lepton of decay of (non oscillating) B-hadron in opposite hemisphere (level 1 trigger ): B– –  Bs0 • decay • sign of D-meson: Bs0 Ds–

  9. Ideal oscillation

  10. Oscillation in an experiment ms = 14 ps–1 resolution of t is very important

  11. Oscillation? ms = 24 ps–1

  12. d = ct ,  = p/m proper time resolution

  13. Oscillation signal significance ?

  14. Extracting information on ms from data • How to extract the oscillation frequency ms from the measurements • Max. Likelihood method (for parameter estimation) • was found to have several disadvantages • needs lots of MC • sensitivity of analysis not easy to define or estimate • combination of several analyses is difficult • ln L w.r.t. minimum or infinity? (different results) • Amplitude method • invented by H.G. Moser from ALEPH 1 + 1cos (mst)  1 + Acos (mst)

  15. A limit may be placed in regions of mswhere amplitudes of unityare excluded (at 95% C.L.).

  16. md – measurement: CDF@Tevatron At each value of msin the interesting rangean amplitude is measured, where an amplitude of unity indicates a successful observation of oscillation with that frequency.

  17. CDF: ms – Semileptonic Channel

  18. CDF: ms – Hadronic Channel

  19. ms: CDF + World Combined

  20. Conclusions • Clean measurement of ms serves as input to fit Bs0  J/  • determination of s (among other parameters) • Already with 10 fb–1 Atlas is capable to achieve the sensitivity that is obtained by the SM-fit to all available data today • The analysis is also sensitive in the SUSY regime

More Related