1 / 31

X-Ray Studies of Nucleosynthesis and Abundances in Supernova Remnants John P. Hughes

X-Ray Studies of Nucleosynthesis and Abundances in Supernova Remnants John P. Hughes Rutgers University. Why X-rays?. Ly a lines of all species from C (0.368 keV) to Zn (9.3 keV) kT ~ 10 6 K to 10 8 K from shocks in ejecta and CSM/ISM. ASCA. W49B. S. Si. Ar. Ca. Fe.

kenaz
Download Presentation

X-Ray Studies of Nucleosynthesis and Abundances in Supernova Remnants John P. Hughes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. X-Ray Studies of Nucleosynthesis and Abundances in Supernova Remnants John P. Hughes Rutgers University Carnegie Symposum

  2. Why X-rays? • Lya lines of all species from C (0.368 keV) to Zn (9.3 keV) • kT ~ 106 K to 108 K from shocks in ejecta and CSM/ISM ASCA W49B S Si Ar Ca Fe Carnegie Symposum

  3. X-ray Emission/Atomic Processes Continuum emission – thermal bremsstrahlung: Line emission: Abundance of element Z Ionization fraction of ion i Carnegie Symposum

  4. Abundance Determination Issues • Thermodynamic State • Nonequilibrium Ionization (NEI) (net~105 cm-3 yr) • T, n evolution with time/radius (e.g., Sedov) • Other effects: • Heating/cooling in pure element ejecta • Te/Tp • Nonthermal particles (rates and excitation) • Absolute abundances (e.g., Si/H, O/H, Fe/H) • Rely on assumption of H/He-dominated continuum • Relative abundances (e.g., Mg/Si, O/Fe) • OK, if species have the same spatial distribution Carnegie Symposum

  5. Ejecta Mass Determination Issues • Volume estimation • Clumping (reduces actual mass) • Distance (M~D5/2) • Source of electrons • Measure EM = nenIV • Solar abundance: ne ~ nH ~ nFe/107.6-12 ~ 25000nFe • Pure Fe: ne ~ 20nFe • Inferred Mpure Fe /Msolar ~ 35 Carnegie Symposum

  6. Where do we find ejecta? • Optical: SNRs with high velocity oxygen-rich features Galactic: Cas A, G292.0+1.8, Puppis A LMC/SMC: N132D, E0540-69.3, E0102.2-72.2 Other: an unresolved SNR in NGC 4449 • Remnants of historical SNe e.g., SN1006, SN1572 (Tycho), SN1604 (Kepler) Based on [Fe II] in absorption; X-ray spectra • Ejecta-dominated SNRs e.g., W49B, G352.7-0.1, G337.2-0.7, G309.2-0.6 Based on X-ray spectra (mostly ASCA) • Nearly all remnants up to ages of at least ~10,000 yrs!!! N49, N63A, DEM71, N49B, and E0103-72.6 Based on Chandra spectro-imaging Carnegie Symposum

  7. Core Collapse Supernovae • SN II, SN Ib/c (Zwicky & Baade 1934) • Massive stars that explode with (SN II) or w/out (SN Ib/c) their H envelopes • Photodisintegration of Fe, plus electron capture on nuclei, remove central P support • Core collapses, leading to NS or BH • Core stiffens, rebounds and drives an outward moving shock • Neutrinos or jets needed to produce explosion • Mean Rate ~ 1.3 SNU Carnegie Symposum

  8. Nucleosynthesis in CC SNe • Hydrostatic nucleosynthesis • During hydrostatic evolution of star • Builds up shells rich in H, He, C, O, and Si • Amount of C, O, Ne, Mg ejected varies strongly with progenitor mass • Explosive nucleosynthesis • Some mechanism drives a shock wave with 1051+ erg through the Fe-core • Burning front T’s of ~109 K cause explosive O- and Si-burning • Only affects the central parts of the star – outer layers retain their pre-SN composition Carnegie Symposum

  9. Explosive Nucleosynthesis Carnegie Symposum

  10. Overturning Our View of Cas A Hughes, Rakowski, Burrows, and Slane 2000, ApJL, 528, L109. Carnegie Symposum

  11. Cas A - Doppler Imaging by XMM • Similar velocity structures in different lines • SE knots blueshifted • N knots redshifted • Tight correlation between Si and S velocities • Fe • Note velocity distribution in N • Extends to more positive velocities than Si or S Willingale et al 2002, A&A, 381, 1039 Carnegie Symposum

  12. Cas A – 3D Ejecta Model “Plane of the sky” “Rotated” Red: Si Ka Green: S Ka Blue: Fe Ka Circle: Main shock Fe-rich ejecta lies outside Si/S-rich ejecta Carnegie Symposum

  13. Oxygen-Rich SNR G292.0+1.8 Park et al 2001, ApJL, 564, L39 Carnegie Symposum

  14. Oxygen-Rich SNR G292.0+1.8 Ejecta Rich in O, Ne, and Mg, some Si [O]/[Ne] < 1 No Si-rich or Fe-rich ejecta Carnegie Symposum

  15. Oxygen-Rich SNR G292.0+1.8 Normal Composition, CSM Central bright bar – an axisymmetric stellar wind (Blondin et al 1996) Thin, circumferential filaments enclose ejecta-dominated material – red/blue supergiant wind boundary Carnegie Symposum

  16. Thermonuclear Supernovae • SN Ia (Hoyle & Fowler 1960) • No hydrogen, a solar mass of 56Ni, some intermediate mass elements (O, Mg, Si, S,…) • Subsonic burning (deflagration) of approx. one Chandrasekhar mass of degenerate C/O • C-O white dwarf accreting H/He-rich gas from a companion • No compact remnant • Mean rate ~ 0.3 SNU Carnegie Symposum

  17. Identifying Remnants of SN Ia Tycho • Balmer-dominated SNRs (partially neutral ISM) • Ejecta abundances (Si and Fe rich, poor in O and Ne) • Remnant structure (uniform ISM, “smoother” ejecta, little spectral variation) E0509-67.5 Carnegie Symposum

  18. SN Ia Spectra and Abundances • Comparison to models • O, Ne, Mg: relatively low • Si, S, Ar, Ca: consistent • Fe: very low (<0.1) • Other spectral results • Fe: co-spatial with Si, but hotter and lower net W7: Nomoto et al 1984, Thielemann et al 1993 WDD1: Iwamoto et al 1999 NEI fit: Warren et al 2003 Carnegie Symposum

  19. ISM Abundances of the LMC • Using SNRs as a probe of the ISM • 7 SNRs, ages from 2,000 yr to 20,000 yr • Data from ASCA • Spectra calculated for evolutionary models (Sedov solution) • spatial variation • temporal variation Carnegie Symposum

  20. LMC SNRs: Integrated Abundances From fits to ASCA global X-ray spectra of 7 evolved LMC remnants N49B DEM L71 Hughes, Hayashi, & Koyama 1998, ApJ, 505, 732 Carnegie Symposum

  21. LMC Metal Abundances HHK95: ASCA X-ray SNRs Duf84: UV/Optical spectra H II regions (Dufour 1984) RD92: F supergiants (Mg, Si, Fe) (Russell & Bessel 1989) H II regions, SNRs (O, Ne, S) (Russell & Dopita 1990) Carnegie Symposum

  22. DEM L71 • Middle-aged SNR • 36” (8.7 pc) in radius • 4,000 yrs old • Rims: LMC composition • Core: [Fe]/[O] > 5 times solar • Ejecta mass: 1.5 Msun SN Ia ejecta Hughes, Ghavamian, Rakowski, & Slane 2003, ApJ, 582, L95 Carnegie Symposum

  23. N49B • Middle-aged SNR • 80” (19 pc) in radius • 5000-10,000 yrs old • Bright and faint rims • LMC composition • ISM density varies by x10 • Ejecta • Revealed by equivalent-width maps • Mg & Si rich, no strong O or Ne Park, Hughes, Slane, Burrows, Garmire, & Nousek 2003, ApJ, submitted. Carnegie Symposum

  24. SNR 0103-72.6 • Middle-aged SNR • 87” (25 pc) in radius • >10,000 yrs old (?) • Circular rim • SMC composition • Central bright region • O, Ne, Mg, Si-rich ejecta • No Fe enhancement Park, et al 2003, ApJ, in prep. Carnegie Symposum

  25. Summary • Core Collapse SNe • Cas A • X-ray ejecta dominated by Si, S, and Fe • explosive nucleosynthesis • Extensive mixing and overturning of ejecta layers • G292.0+1.8 • X-ray ejecta dominated by O, Ne, and Mg (no Fe) • Ambient medium strongly modified by progenitor • Contains “normal” young pulsar and its wind nebula Highly Structured Ejecta/Environment Carnegie Symposum

  26. Summary • Thermonuclear SNe (Tycho, E0509-67.5) • X-ray ejecta dominated by Si, S, and Fe • Stratification (most of the Fe core unshocked) • Fe: higher kT, lower net – due to: • evolution (ejecta density profile) • radioactivity • Ejecta relatively smooth and symmetric • only factor of 2 intensity variations • little spectral variation • few (one or two) clumps of Fe-rich ejecta Carnegie Symposum

  27. Summary • Evolved LMC SNRs • Global X-ray abundances consistent with optical/UV values • Individual SNRs show obvious signs of ejecta • DEM L71: 4,000 yrs, Si and Fe-rich SN Ia ejecta • N49B: 5,000-10,000 yrs, Mg and Si-rich ejecta • E0103-72.6: 10,000+ yrs, O, Ne, and Mg-rich ejecta • Issues for nucleosynthesis models • O/Ne ratio < 1 (G292.0+1.8) • O,Ne/Mg << 1 (N49B) Carnegie Symposum

  28. THE END Carnegie Symposum

  29. SN Ia Spectra and Abundances Carnegie Symposum

  30. Properties of DEM L71 Ejecta • Outer rim: lowered abundances, ~0.2 solar (LMC ISM) • Core: enhanced Fe abundance, [Fe]/[O] > 5 times solar (ejecta) • Thick elliptical shell, 32” by 40” across (3.9 pc by 4.8 pc) • Dynamical mass estimate Wang & Chevalier 2001 r’ ~ 3.0 Mej = 1.1 Mch (n/0.5 cm-3) • EM mass estimate EM ~ ne nFe V MFe < 2 Msun • Main error: source of electrons Fe-rich, low mass SN Ia Carnegie Symposum

  31. N63A • Middle-aged SNR • 34” (8.2 pc) in radius • 2000-5000 yrs old • 2nd brightest LMC SNR • “Crescent”-shaped features • Similar to features in Vela • Clumps of high speed ejecta • Not ejecta dominated • Triangular hole • X-ray absorption • Approx. 450 solar mass cloud • On near side • No PSR or PWN • LX < 4x1034 erg s-1 Warren, Hughes, & Slane, ApJ, in press (20 Jan 2003) Carnegie Symposum

More Related