1 / 9

Global Routing

Global Routing. Prof. Shiyan Hu shiyan@mtu.edu Office: EERC 731. Global Routing Approaches. Sequential Approach Net ordering based approach Concurrent Approach Integer Programming. Net Ordering. In sequential approach, we need some net ordering .

kenda
Download Presentation

Global Routing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Global Routing Prof. Shiyan Hu shiyan@mtu.edu Office: EERC 731

  2. Global Routing Approaches • Sequential Approach • Net ordering based approach • Concurrent Approach • Integer Programming

  3. Net Ordering • In sequential approach, we need some net ordering. • A bad net ordering will increase the total wire length, and may even prevent completion of routing for some circuits which are indeed routable. A B A B B B A B first (Good order) A first (Bad order) A

  4. Criteria for Net Ordering • Criticality of net - critical nets first. • Estimated wire length - short nets first since they are less flexible. • Consider bounding rectangles (BR): A B B A B is in A’s BR

  5. Net Ordering (cont’d)

  6. Nets Set of possible routing trees net 1 T11, T12, ...... , T1k1 : : : : net n Tn1, Tn2, ... , Tnkn Concurrent Approach • Consider all the nets simultaneously. • Formulate as an integer program. • Given: Lij = Total wire length of Tij Ce= Capacity of edge e • Determine variable xij s.t. xij = 1 if Tij is used xij = 0 otherwise.

  7. Integer Program Formulation

  8. Solution 1 1 2 3 What are the constraints for edge capacity? 3 1 2 2 Concurrent Approach: Example Possible trees: 1 1 2 3 net 1: 2 3 3 3 1 2 2 net 2: 2 3 3 net 3: 2 2

  9. Integer Programming Approach • Standard techniques to solve IP. • No net ordering. Give global optimum. • Can be extremely slow, especially for large problems. • To make it faster, a fewer choices of routing trees for each net can be used. • Determining a good set of choices of routing trees is a hard problem by itself.

More Related