630 likes | 701 Views
Explore mutations, genes, genetic code, and mutation generation. Learn about mutations' types, causes, impact on DNA, and mutation rates in the human genome.
E N D
What is a gene? Prokaryotic Genes PROMOTER 3’ 5’ antisense ---TTGACAT------TATAAT-------AT-/-AGGAGGT-/-ATGCCC CTT TTG TGA ---AACTGTA------ATATTA-------TA-/-TCCTCCA-/-TAC GGG GAA AAC ATT sense (-35) 3’ (-10) 5’ RIBOSOME BINDING SITE 3’ 5’ U-/-AGGAGGU-/-AUGCCC CUU UUG UGA Met Pro leu leu stp When ALL OF THESE RULES ARE SATISFIED THEN THEN A PIECE OF DNA WILL GENERATE A RNA WHICH WILL BE READ AND TRANSLATED INTO A PROTEIN.
Reading the genetic code U U U A A A U A C Lys Phe Met 5’ 3’ A T G T T T A A A T A G C C C C A T A A A T T T C T A G G G 3’ 5’ 5’ 3’ A T G T T T A A A T A G C C C 5’ 3’ 5’ 3’ A U G U U U A A A U A G C C C C A T A A A T T T C T A G G G 3’ 5’ A U G U U U A A A U A G C C C S T P
No Gaps 5’ 5’ 3’ 3’ A U G A U G U U U U U U A A A A A A U A G U A G C C C C C C A A U U U A U U U A A A U A C U A C Asn Met Lys Phe Met Leu S T P
No overlaps 5’ 5’ 3’ 3’ A U G A U G A A A A A A C C C C C C U A G U A G C C C C C C U U U U G G G G G U U U U A C U A C Lys Met Pro Lys Met Trp S T P
The GENETIC CODE The code is a three letter code. Second letter U C A G UUU UUC UUA UUG CUU CUC CUA CUG AUU AUC AUA AUG GUU GUC GUA GUG UCU UCC UCA UCG CCU CCC CCA CCG ACU ACC ACA ACG GCU GCC GCA GCG UAU UAC UAA UAG CAU CAC CAA CAG AAU AAC AAA AAG GAU GAC GAA GAG UGU UGC UGA UGG CGU CGC CGA CGG AGU AGC AGA AGG GGU GGC GGA GGG U C A G U C A G U C A G U C A G Phe Tyr Cys U Ser STOP STOP Leu Trp His C Arg Pro Leu Gln Third letter First letter Asn Ser Ile A Thr Arg Lys Met Asp G Val Ala Gly Glu
The code Ser Ser Ser Ser Ser AGG AGU UCG AGG AGG 3 amino acids are specified by 6 different codons 5 amino acids are specified by 4 different codons 1 amino acid is specified by 3 different codons 9 amino acids are specified by 2 different codons 2 amino acids are specified by 1 different codons The degeneracy arises because More than one tRNA specifies a given amino acid A single tRNA can base-pair with more than one codon tRNAs do not normally pair with STOP codons ----UCC------UCA------AGC ----UCC------UCA------
The Genetic Code Properties of the Genetic code: 1- The code is written in a linear form using the nucleotides that comprise the mRNA 2- The code is a triplet: THREE nucleotides specify ONE amino acid 3- The code is degenerate: more than one triplet specifies a given amino acid 4- The code is unambiguous: each triplet specifies only ONE amino acid 5- The code contains stop signs- There are three different stops 6- The code is comma less 7- The code is non-overlapping
Generation of mutations Spontaneous mutations Replication induced mutations of DNA Usually base substitutions (Most errors are corrected) Meiotic crossing over can induce mutations Small additions and deletions AND Large changes as well Environment induced changes Exposure to physical mutagens - Radioactivity or chemicals Depurination (removal of A or G) Repair results in random substitution during replication Deamination (removal of amino group of base) (nitrous acid) Cytosine--uracil--bp adenine--replication-- Oxidation (oxoG) guanine--oxoguanine--bp adenine--replication -- Base analog incorporation during replication BU-T Intercalating agents
Methods used to study mutations Gross chromosomal changes- deletions, insertions, inversions, translocations Cytology- microscopy- karyotype Small mutations Small deletions, insertions and point mutations Recombinant DNA technologies
Mutation rate There are approximately 1013 cells in the human body Each cell receives 10,000 DNA lesions per day (Lindahl and Barnes 2000). Most pervasive agent is UV. 100,000 lesions per exposed cell per hour (Jackson and Bartek 2009). Ionizing agents (X-rays/g-rays) are most toxic because they generate double strand breaks (Ward 1988). Chromosome instability (gain or loss of entire segments) is frequent - 40% of imbalances are entire arm imbalance while 45% are terminal segment imbalance (double strand break, nondysjunction etc) Sequencing 179 humans as part of the 1000 genome project: On average, each person is found to carry approximately 250 to 300 loss-of-function variants in genes of which 50 are in genes previously implicated in inherited disorders. 1.3 million short indels (1-10,000 bp) were identified and 20,000 large (>10,000 bp) variants were identified. Variation detected by the project is not evenly distributed across the genome: certain regions, containing repetitive sequences (sub-telomeres etc), show high rates of indels.
Sequencing the whole genomes of a family (2010 Science 328 636). 98 crossovers in maternal genome 57 crossovers in paternal genome Mutation rate is 1x10-8 per position per haploid genome (human genome is 3x109 bp) It was calculated that there are ~70 new mutations in each diploid human genome Some sites such as CpG sites mutate at a rate 11 times higher than other sites Exome sequencing of 2440 individuals (Science 2012 337 40) Each person has ~100 loss of function mutations (~35 nonsense). 20 loss of function mutations are homozygous Some alterations in sequence concentrate in specific geographic populations Rare changes are population specific and their frequencies vary for each geographic population
Chromosomes and chromosome rearrangements Cytogenetics is the study of genetics by visualizing chromosomes. This area of research is germane to several areas of biological research. Cytogenetics has been fundamental to understanding the evolutionary history of a species (for example, although the Chimp and the human are morphologically very different, at the level of the chromosome (and DNA sequence) they are extremely similar. H = human C= chimp G = Gorilla O = Orang utang
Karyotype Chromosomes are classified by size, centromere position and banding pattern: Shown below is the human karyotype (description of the chromosome content of a given species) Karyotype is the chromosome description of length, number, morphology. Karyotype analysis is extremely important in medicine. Alternations in karyotypes are linked to birth defects and many human cancers. Metacentric- centromere in the middle Acrocentric- centromere off center telocentric centromere at one end
Banding patterns Specialized stains produce unique banding patterns along each chromosome. Banding patterns are extremely useful for detecting abnormalities in chromosome structure. For many of the chromosome stains- the molecular basis of the banding patterns is unclear. Nonetheless these techniques remain fundamental in many areas of genetic research
MU to bp Genetic maps are based on recombination frequencies and describe the relative order and relative distance between linked genes. Remember genes reside on chromosomes. So what we would like to know is where are the genes located on the chromosomes 22% Rf = 22MU What does this mean in terms of chromosomes and DNA?
Physical maps Physical maps provide information concerning the location of genes on chromosomes Where are the genes on chromosomes? Cytological studies have been successfully used to map genes to specific regions of a chromosome. For example in Drosophila in some cells the chromosomes become highly replicated and exhibit very characteristic banding patterns:
In situ hybridization Salivary glands Squash on slide Denature/Stain polytene chromosomes label gene probe (you can only use this method if you have the gene cloned) Hybridize probe to polytene chromosomes Autoradiography
Chromosome loss Chromosome instability- Elevated gain or loss of complete chromosomes Frequent in tumors Frequent in in vitro fertilized embryos Gross chromosomal rearrangements during in vitro fertilization. 40% of embryos carried entire chromosome imbalance Gain or loss of segments of chromosomes CNV- copy number variation of chromosome segments 5% of individuals genome displays CNV Synuclein gene CNV is involved in Parkinsons Many cancers- malignant cells most often gain additional copies of chromosome segments- genes in these segments are mis-expressed or mis-express other genes) Microarray hybridization of DNA from tissues of identical twins- differences at several loci seen (Bruder et al 2008) Microarray hybridization of DNA from different tissues of single individual (Piotrowski et al., 2008) Gross chromosomal rearrangements during in vitro fertilization 55% of embryos carried terminal imbalance (sub-telomere loss) (Vanneste et al., 2009) -microarray based screen of IVF 35 embryo
Gross chromosomal changes The Cri du chat syndrome in humans is a result of a deletion in the short arm of chromosome 5. This was determined by comparing banding patterns with normal and Cri du Chat individuals Types of chromosome rearrangements that can be studied by karyotype analysis: GROSS CHROMOSOMAL CHANGES Deletions, Duplications, Inversions, Translocations
DDIT A____B____C________D____E____F A____B____C________D____F A____B____C________D____E____E____F A____B____C________E____D____F A____B____C________D____E____F A____B____C________D____L H____I____J________K____L H____I____J________K____E____F Normal Chromosome Deletions (deficiency) Duplications Inversions Translocation
Insertion and deletions are frequent: Sequencing 179 humans as part of the 1000 genome project: On average, each person is found to carry approximately 250 to 300 loss-of-function variants in genes of which 50 are in genes previously implicated in inherited disorders. 20,000 large structural variants were identified and 1.3 million short indels were identified. Variation detected by the project is not evenly distributed across the genome: certain regions, such as subtelomeric regions, show high rates of variation. 1 in 500 children have reciprocal translocation but Such translocations are usually harmless. (However gametes produced by the children will have defects). 1 in 50 children have inversions (small and large). The heterozygous inversion carrier generally show no adverse phenotype (but produce abnormal meiotic products from crossing-over in the inversion loop).
Deletions Deletions are often detected cytologically by comparing banding patterns between the normal and the partially deleted chromosomes Deleted segment Chromosome no female deletion chromosome1 Band 46,XX, del(1)(q24q31) Female with a deletion of chromosome 1 on the long arm (q) between bands q24 to q31.
In many instances deletions are too small to be detected cytologically. In these instances genetic/molecular techniques are used. Since cytological deletions remove a contiguous set of genes, there is a high probability that an essential gene will be deleted. Therefore deletions will survive as heterozygotes and not homozygotes. A____B________C____D Normal A____B________C____D A____________C____D Homologous deletion (Lethal?) A____________C____D A____________C____D Heterologous deletion (NOT Lethal) A____B________C____D
Consequences of deletions A+_____B+_____C+___________D+ Normal A+_____B+_____C+___________D+ In individuals heterozygous for the deletion, pairing is disrupted in the regions surrounding the deletion. Therefore recombination is also significantly reduced in these regions. B+ A+____/ \_____C+___________D+ A+___________C+___________D+ Genotype A+_____b______c____________D+ Normal A+_____B+_____C+___________D+ A deletion on one homologue unmasks recessive alleles on the other homologue. The effect is called pseudo-dominance. A+____b______c____________D+ A+___ _____C+___________D+
Deletions in X Females in Drosophila XX Males in Drosophila XY or XO Deletion series phenotype sick dead sick
Changes in chromosome structure Deletions: Hemizygosity from large deletions results in lethality- even the smallest cytologically defined deletions take out tens of 1,000's of bps and are likely to remove essential genes. 2. Organisms can tolerate hemizygosity from small but not large deletions. The reason for this is not entirely clear and is placed under the rubric of disrupting the overall ratio of gene products produced by the organism
Deletion mapping Deficiency mapping or deletion mapping: This provides a means of rapidly mapping a new mutation A deficiency or deletion is the loss of a contiguous series of nucleotides ATGATCGGGCCCATCAAAAAAAAAAAATCATCCCCCGGGG DELETION ATGATCGGGCCCATC CATCCCCCGGGG ATGATCGGGCCCATC|CATCCCCCGGGG Defined deficiencies are very useful for mapping genes
Deficiency mapping Say we have 6 sites defined by point mutations within the rosy gene ---1-----2-----3-----4-----5-----6 ---------------------------------- ---------2------------------------ ---------------------4------------ --------------DDDDDDDDDD---------- Can we get intragenic recombinants that will restore normal rosy gene? ry2 and ry4? Y ry2 and the deletion? Y ry4 and the deletion N Say we isolate a new ry mutation you call it ry(zany) You cross it to the deletion and do not find any Recombinants Where does ry(z) map
Deficiency mapping Say we have 6 sites defined by point mutations within the rosy gene ---1-----2-----3-----4-----5-----6 ---------------------------------- ---------2------------------------ ---------------------4------------ --------------DDDDDDDDDD---------- Can we get intragenic recombinants that will restore normal rosy gene? ry2 and ry4? YES ry2 and the deletion? YES ry4 and the deletion? No Say we isolate a new ry mutation you call it ry(z) You cross it to the deletion and do not find any recombinants Where does ry(z) map?
Deficiency mapping Generate a heterozygote Gene point mutant/deletion mutant Ask if you get intragenic recombinants Heterozygote will be pseudodominant The single point mutation will be observed over the deletion
Multiple deficiencies Specific deletions can define a series of regions within a gene Gene ---1-----2-----3-----4-----5-----6----7----8-- ---------------------------------------------- DDDDDDDDDDDDDDDDDDDDDDDDDDDDD----------------- ------------------DDDDDDDDDDDDDDDDDDDDDD------ These two deletions define 4 regions within the gene I II III IV Now say a newly isolated mutation does not produce normal recombinants with both deletions To which region does it map?
Multiple deficiencies Multiple deletions can define a series of regions within a gene Gene ---1-----2-----3-----4-----5-----6----7----8-- ---------------------------------------------- DDDDDDDDDDDDDDDDDDDDDDDDDDDDD----------------- ------------------DDDDDDDDDDDDDDDDDDDDDD------ These two deletions define 4 regions within the gene I II III IV 4-7 + - - + 1-5 - - + + + = If a mutation maps to this region, normal recombinant flies are produced - = If a mutation maps to this region, normal recombinant flies are NOT produced Now say a newly isolated white mutation does not produce normal recombinants with both deletions To which region does it map?
Duplications A____B____C________D____E____F A____B____C________D____E____E____F normal Duplication Individuals bearing a duplication possess three copies of the genes present in the duplicated region. In general, for a given chromosomal region, organisms tolerate duplications much better than deletions. 46,XY, dup(7)(q11.2q22) Male with a duplication of chromosome 7 on the long arm (q) between bands 11.2 to 22
Tandem duplications- Important class of duplications!!! This is a case in which the duplicated segment lies adjacent to the original chromosomal segment A B C D ------ A B CB CB CB C D Once a tandem duplication arises in a population, even more copies may arise because of asymmetrical pairing at meiosis. Remember when the homologs pair during prophase of meiosis I, they line up base-pair for base pair. Duplications lead to mistakes in this pairing mechanism
Proper pairing: A____B____C____B____C____D____E A____B____C____B____C____D____E A____B____C____B____C____D____E A____B____C____B____C____D____E Inappropriate pairing: A____B____C____B____C____D____E A____B____C____B____C____D____E A____B____C____B____C__-----------__D____E A____B____C____B____C__-----------__D____E
Tandem duplications expand by mistakes in meiosisI during pairing a b c b c d e B C E B A C D
Tandem duplications expand by mistakes in meiosis during pairing Paired non-sister chromatids B C E A B C D c b a d e c b 39
What happens if you get a crossover after mis-pairing in meiosisI? A B C B C D A B C B C D c b b c c b a b d a c d B C E A B C D A B C B C D A B C B C B C D c b a d e A B C D c b A B C B C D
The four meiotic products of a crossover between regions B and C: A-B-C-B-C-D-E A-B-C-D-E A-B-C-B-C-B-C-D-E A-B-C-B-C-D-E This process may repeat itself many times, such that a small fragment of the genome is repeated 10,000 times.
An example of this is near the centromeres of the Drosophila genome: If you look at the DNA sequence in this region it consists of small 5-10 bp sequences (AATAC)n repeated 1,000s of times. It is believed to have arisen from unequal crossing over. Repetitive DNA- cell does not like it- They try to reduce recombination of repetitive DNA by packaging the DNA with proteins to form heterochromatin- cold spots of recombination along the chromosome
Duplications provide additional genetic material capable of evolving new function. For example in the above situation if the duplication for the B and C genes becomes fixed in the population- the additional copies of B and C are free to evolve new or modified functions. This is one explanation for the origin of the tandemly repeated globin genes in humans. Each of these has a unique developmental expression pattern and provides a specialized function. The hemoglobin in fetus has a higher affinity for oxygen since it acquires its oxygen from maternal hemoglobin via competition
Two distinct globin chains (each with its individual heme molecule) combine to form hemoglobin. One of the chains is designated alpha. The second chain is called "non-alpha". The fetus has a distinct non-alpha chain called gamma. After birth, a different non-alpha globin chain, called beta, pairs with the alpha chain. The combination of two alpha chains and two non-alpha chains produces a complete hemoglobin molecule. The genes that encode the alpha globin chains are on chromosome 16. Those that encode the non-alpha globin chains are on chromosome 11. The alpha gene complex is called the "alpha globin locus", The non-alpha complex is called the "beta globin locus". The expression of the alpha and non-alpha genes is closely balanced by an unknown mechanism. Balanced gene expression is required for normal red cell function. Disruption of the balance produces a disorder called thalassemia. The closely linked globin genes may have originally arisen from tandem duplication.
Alternatively some duplicated genes accumulate mutations and are no longer expressed (these are akin to junked cars along the highway). These are known as pseudogenes. One of the genes in the hemoglobin cluster is a pseudogene. -G-A-*-- pseudogene Unequal crossing over among the tandemly repeated hemoglobin gene cluster is the explanation for some inherited blood diseases. Hemoglobin lepore
Alternatively some duplicated genes accumulate mutations and are no longer expressed (these are akin to junked cars along the highway). The beta-globin gene cluster in humans contains 6 genes, called epsilon (an embryonic form), gamma-G, gamma-A (the gammas are fetal forms), pseudo-beta-one (an inactive pseudogene), delta (1% of adult beta-type globin), and beta (99% of adult beta-type globin. Gamma-G and gamma-A are very similar, differing by only 1 amino acid. These are known as pseudogenes. One of the genes in the hemoglobin cluster is a pseudogene. -G-A-*-- pseudogene Unequal crossing over among the tandemly repeated hemoglobin gene cluster is the explanation for some inherited blood diseases. Hemoglobin lepore anemia -G-A-- -G-A- -G-A--
*** • If mispairing in meiosis occurs, followed by a crossover between delta and beta, the hemoglobin variant Hb-Lepore is formed. • This is a gene that starts out delta and ends as beta. Since the gene is controlled by DNA sequences upstream from the gene, Hb-Lepore is expressed as if it were a delta. That is, it is expressed at about 1% of the level that beta is expressed. • Since normal beta globin is absent in Hb-Lepore, the person has severe anemia.
Inversion Chromosomes in which two breaks occur and the resulting fragment is rotated 180 degrees and reinserted into the chromosome. Inversions involve no change in the amount of genetic material and therefore they are often genetically viable and show no abnormalities at the phenotypic level. Gene fusions may occur Inversions are defined as to whether they span the centromere Paracentric inversions do not span the centromere: A B C D E A B DC E Pericentric inversions span the centromere: A CB D E In a pericentric inversion one break is in the short arm and one in the long arm. Therefore an example might read 46,XY,inv(3)(p23q27). A paracenteric inversion does not include the centromere and an example might be 46,XY,inv(1)(p12p31).
Homologs which are heterozygous for an inversion have difficulties pairing in meiosis. During pairing homologous regions associate with one another. Consequently individuals heterozygous for an inversion will form a structure known as an inversion loop. Crossover within inverted region? A---B---C---D---E---F---G A’--B’---C’---D’--E’---F’---G’ A---B---C---D---E---F---G A’--B’---C’---E’---D’--F’---G’ D E D’ E’ A B C F G ‘F G’ A’ B’ C’
The consequence of crossover within a paracentric inversion a-b-c d-e f-g a-b-c d-e f-g a-b-c e-d f-g During meiosis, pairing leads to formation of an inversion loop This is a problem if crossing over occurs within the inversion D E D’ E’ A B C F G ‘F G’ A’ B’ C’ A-B-0-C-D-E’-C’--0--B’-A’ dicentric-fragmentation G-F-E-D’-F’-G’ acentric- no segregation