1 / 21

Sample Size & Power Estimation: Software Issues

Sample Size & Power Estimation: Software Issues. Paul J Nietert, PhD April 25, 2011 Computing for Research. Intermission. General Comments. Can consume much of a collaborative biostatistician’s time Really only relevant in the context of hypothesis testing and in estimation precision

kendra
Download Presentation

Sample Size & Power Estimation: Software Issues

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sample Size & Power Estimation: Software Issues Paul J Nietert, PhD April 25, 2011 Computing for Research

  2. Intermission

  3. General Comments • Can consume much of a collaborative biostatistician’s time • Really only relevant in the context of hypothesis testing and in estimation precision • If there are multiple Aims within a proposal, make sure that each is properly powered. • It can be helpful to perform computations in 2 or more different software programs.

  4. More General Comments • Can be somewhat of an art form • Before proposing a sample size, get a sense from the other investigators what sample sizes are even feasible (know resource limitations). • Make sure you understand the hypotheses that are to be tested. • Make sure you understand the study design.

  5. More General Comments • A well-written sample size estimation section in a grant can convince the reviewers that you know what you’re doing. • A poorly-written sample size estimation section in a grant can convince the reviewers that you don’t know what you’re doing. • Sometimes PIs will calculate a sample size on their own. Double check these, and make sure their rationale is sound. Don’t be afraid to ask how they arrived at their estimate.

  6. Understanding the Term “Effect Size” • In a very general sense, this is the magnitude of the summary statistic you plan to use for your hypothesis test • Difference in means • Difference in proportions • Odds ratio, Risk ratio • Correlation

  7. Understanding the Term “Effect Size” • Often this refers to Cohen’s D: • Small: 0.2 • Medium: 0.5 • Large: >0.8 • An effect size of 1 is equivalent of a 1 standard deviation unit difference between groups. • Can be helpful when trying to justify a sample size when little pilot data exist. • Ex. “With 20 subjects per group, we’ll be able to detect an effect size of 0.9 (i.e. a large effect) with 80% power, assuming 2-sided hypothesis testing and an alpha level of 0.05.”

  8. Software • Free (online, downloadable) – careful! • Moderately priced • Expensive

  9. Sample Size Survey Results • 14 Faculty – PhD • 7 Faculty – RA • 9 Students

  10. Sample size software used

  11. Intermission #2 • Copy & Paste a column

  12. Examples • nQuery • PASS • SAS Power & Sample Size • Simulation (simple independent sample T-test example)

  13. Example • An investigator wishes to investigate a 2-way interaction between 2 risk factors (RF) for a disease. • The prevalence of RF1 and RF2 is 20% and 30%, respectively. 5% have both RF1 and RF2. • The baseline rate of developing disease within a year is know to be 10% (no RFs). • The RR of developing disease within 1 year associated with each of the RFs is 1.5, but the hypothesis is that if both RF1 and RF2 are present, the RR is 5.0. • How many subjects are needed to detect this interaction effect?

  14. Example (Cont.): CalculationsSolve for Prevalence Estimates

  15. Example (Cont.): CalculationsSolve for Prevalence Estimates

  16. Example (Cont.): CalculationsSolve for RR Estimates

  17. Example (Cont.): CalculationsSolve for RR Estimates

  18. Example (Cont.): CalculationsSolve for RR Estimates

  19. Example (Cont.): CalculationsSolve for RR Estimates

  20. SAS Simulation Code

  21. Power Curve

More Related