240 likes | 400 Views
Programming Neural Networks and Fuzzy Systems in FOREX Trading. Presentation 0 Balázs Kovács (Terminator 2), PhD Student Faculty of Economics, University of Pécs E-mail: kovacs.balazs.ktk@gmail.com Dr. Gabor Pauler, Associate Professor Department of Information Technology
E N D
Programming Neural Networks and Fuzzy Systems in FOREX Trading Presentation 0 Balázs Kovács (Terminator 2), PhD Student Faculty of Economics, University of Pécs E-mail:kovacs.balazs.ktk@gmail.com Dr. Gabor Pauler, Associate Professor Department of Information Technology Faculty of Science, University of Pécs E-mail: pauler@t-online.hu
Content of the Presentation • Basic course info • Purpose of the Course • Course Agenda • Accessibility of course materials • FOREX Trading Bot Building Contest • Requirements, Grading and Consultation • Introduction • Basic terms of Stock Market/FOREX • Fractal Theory of Stock/Currency Pair Prices • Basic terms of Distribution Free Estimators (DFE) • Basic terms of Rule-Based Systems (RBS) • Basic terms of Learning Algorithms (LA) • Basic terms of Artificial Neural Networks (ANN) • Biologic analogy: Neurons in Human brain • Comparison with silicon-based hardware • Biologic Neuron and its Mathematical Model • Neural references
Basic course info: Purpose of the Course • Nowadays there are wide range of fancy FOREX „course providers” which promise that you can be a millionaire within 4 weeks, without any serious economic and mathematic training, just completing 1 week rapid course where you learn drawing curves to charts visually. • By contrast, we do not teach how you can be rapidly millionaire with FOREX. Instead of it we teach how to avoid loosing everything you have very rapidly with FOREX: • Participants will be trained besides basics of FOREX and how to use Meta Trader 4 (MT4) FOREX Platform: • Recognizing their psychologic limits and assembling customized trading strategies accordingly, • The MQL programming language of MT4 to create your own indicators, • Theoretical basics of Artificial Neural Networks and Fuzzy Systems, • Using the Joone open-source Neural Shell under GNU license, programming it in Java and set up its data link with MT4. • To motivate gifted students, we organize a FOREX Trading Bot Contest paralel with our course, where team 3-4 students can tune their software to reach maximum amount of return from limited amount of investment, within limited time frame making limited number of trades • As a unique option Trading Bots with extremely high computational requirement can be run at the new University of Pecs Supercomputer in C++ environment • The course has English language course material, even if it presented in Hungarian: • To close out simple-minded Gamblers (Szerencsejátékos) • Because – even if you have trade platforms and courses in Hungarian - almost every additional resource in FOREX you really need (eg. indicator source codes, economic analysises, user guides of trading bots) are most freshly available only in English! • So the main outcome of this course is not being a millionaire in 4 weeks (which is unrealistic at FOREX anyway) but to develope proficiency using Artificial Neural Networks and Fuzzy Systems in a difficult simulated battleground called FOREX. And that knowledge can result getting better paid positions in many areas of engineeering or business
Basic course info: Accessibility of course materials • All course materials are available at PTE-TTK Szentágothai Szakkollégium website: ftp://szentagothai.ttk.pte.hu/pub/pauler/Forex/ in form of PowerPoint presentations and practices • These are NOT conventional „three sentences/slide” projectable presenta-tions, but almost full-text materials with: • Linked-in case study materials • Step-by step animated software usage usable at computer lab • However it is highly recommended for stu- dents to print them out in handout format and taking notes to slides, as questions in quiz may be represented from oral comments of tutor also • All course materials are in English to cap- ture Business English • But presentations are in Hungarian, and we have Hungarian Notes • MT4 GUI can be both We can’t use TAB here!
Basic course info: FOREX Trading Bot Building Contest • To motivate gifted students, we organize a FOREX Trading Bot Contest paralel with our course, where team 3-4 students can tune their software to reach. Rules of the contest are: • Server: FxPro MT4 • Base currency: USD • Maximum Leverage: 1:50 • Demo account capital: 5000 USD http://usd.kurs24.com/huf/?q=5000 • Platform: FxPro MT4 Client Terminal http://www.fxpro.com/hu/downloads/platforms/client-terminal • Operating system of trading bot: Windows 2000, XP, Vista, Windows 7 • Time range: 2011.11.10. 8:00:01 - 2011.12.08. 7:59:59 • Trading hours: whenever markets are open • Currency pairs: all possible pairs of EUR, USD, GBP, CHF, JPY, CAD, AUD, NZD can be traded in demo account • Who can participate: registered students of current course • Performance benchmarks: • Passively managed static currency portfolio, • Tutors demo account • Maximal number of modifications on a trading bot: 5 • Minimal number of trades completed by bot: 10 (without closing) • Using any foreign code in bots without referencing it will result in immedaiate exclusion from contest • Opened positions will be closed at the end of time range by tutors • Winner team will be the one with the highest balance at the closing • Identical balances among more teams will result in deuce • Relative result% = Team balance/Tutor benchmark balance of teams compared to benchmarks can be published in university media/certificates
Basic course info: Requirements, Grading and Consultation • Mid-semester requirements: • Max. 10 × 3points = 30 points from simple 5-question quizes written at the beginning of presentations where students are evaluated individually • Quizes are from the last presentation and practice • Missed quizes can be substituted by one extra 6 point quiz ad the end of semester • Max. 10 × 3points = 30 points from home assignments evaluated at project team-level. Teams are free to reallocate their home assignment points internally to proportionate it to contribution of their members! • Home assignments are due to the beginning of next practice • Missed home assignments cannot be replaced after deadline as they are group assignments • Max 40 team points from trading bot contest = 40 × Relative result% • Grading of individual students: • 0-29points:Reject signing course(0), 30-49points: Fail(1), 50-59points: Sufficit(2), 60-69points: Medium(3), 70-79points: Good(4), 80-points: Excellent(5) • In case of Fail(1), there are 2 possibilities for correction at oral exam from course material of presentations to get credit • Consultations: • Tutors will provide consultation at Department of Informatics, PTE-TTK, at times prearranged at pauler@t-online.hu or kovacs.balazs.ktk@gmail.com • Results: • Students can track their mid-semester results at ftp://szentagothai.ttk.pte.hu/pub/pauler/Forex/ExamForex/
Content of the Presentation • Basic course info • Purpose of the Course • Course Agenda • Accessibility of course materials • FOREX Trading Bot Building Contest • Requirements, Grading and Consultation • Introduction • Basic terms of Stock Market/FOREX • Fractal Theory of Stock/Currency Pair Prices • Basic terms of Distribution Free Estimators (DFE) • Basic terms of Rule-Based Systems (RBS) • Basic terms of Learning Algorithms (LA) • Basic terms of Artificial Neural Networks (ANN) • Biologic analogy: Neurons in Human brain • Comparison with silicon-based hardware • Biologic Neuron and its Mathematical Model • Neural references
Basic terms of Stock Market/FOREX 1 • The Stock Exchange (részvénytőzsde) is a Non-profit Company (non-profit társaság ), what is Exclusive (Kizárólagos) trading place of stocks of Publicly Quoted (tőzsdére bevezetett, nyílvánosan árfolyam-jegyzett)Companies (részvénytársaságok). These are larger, stabile firms complying strict Accounting (Számviteli) rules. Stocks of smaller companies not quoted publicly are traded at Over The Counter (OTC) market. • Macroeconomic (Makrogazdasági) function of stock exchange is Effective Allocation of Investment Resources (hatékonyan ossza el a vállalkozások közt a beruházási erőforrásokat) allocating more money to more profitable companies with larger growth in a public, open competition. • Microoeconomic (Mikrogazdasági, vállalati szintű) functions of Stocks/Equity (Rész-vénytőke): It helps Raise Funds (Tőkét gyűjt) necessary for operating a company and: • Represents proportional Ownership/share (tulajdonrésze) in a company, giving the right to Vote (Szavaz) in Board of Directors (igazgatótanács) governing it, except: non-voting stocks • Profitable companies pay Dividend (osztalék) of profit for that, but it is not guaranteed, except: if it is Preferred Stock (elsőbbségi/aranyrészvény): always pays dividend, but cannot be sold and usually does not have vote • Ordinary stocks can be Sold (eladható) on the stock exchange any time at Spot Stock Price (aktuális árfolyam), or at Futures (határidős árfolyam)except: if the company has Pre-emptive Option (elővételi jog), to block Hostile Takeover (támadó célú részvényfelvásárlás) by competitor firms • If we Bought (vettük) or Underwrite (Lejegyeztük) a stock in the past, and there was Hausse, Bull (árfolyamemelkedés) we can earn Yield (árfolyam-nyereség). If there was Baisse, Bear (csökkenés) then we Loose (veszt).
Basic terms of Stock Market/FOREX 2 • Equity is the most profitablebutmostriskytool of InvestmentPortfolio Management (Tőke befektetési portfolió menedzsment): Youcanbuy and hold (Long) stocks of profitable and less riskycompanies (Blue Chips) tomake profit fromdividendorpriceincrease, and liquidatestocks (Short) of badcompaniestoavoidloss. Itcanuse 3 basictechniques: • Hedge (Fedezeti ügylet): toshort/long a stockwhosepricetendencyouslymovesagainstaprice of anotherstockorCurrency (Valuta) longed/shortedtoeliminaterisk of lossfromadversepricemovement. Less risky, lessprofitable. • Arbitrage (Arbitrázs): short/long a stockveryrapidly (1day-some hours) tomake profit from minor pricefluctuations. Mediumrisk, mediumprofitable. • Speculation (Spekuláció): open a short/longPosition (Pozíció) forlongertimeframeagainstthepriceExpectations (Várakozás) of thewhole market, and trytoinfluencethemwithtrickstorapidlychangetheirexpectations. Veryrisky, veryprofitable. • Actors of stockexchange: • Broker (bróker): doesnotownstockjusttradesitbyComission (Megbízás) of theownerfor a Fee (Díj), • Dealer (díler): canownstocks • Underwriter (undervrájter): canbuyallstocks of a newcompanyforre-sale. Frombrokertounderwritertheyhave more rightstoperformdifficult and riskytrades, buttheyhavetocomply more and more strict accounting and stockexchangerules • FOREX, FOReignEXchange (Devizatőzsde) differsfromordinarystockexchange 2 ways: • Instead of tradingstocksagainstoneCurrency (Valuta) eg. (Sell IBMforUSD), severalForeignExchanges (Deviza, valutára szóló számlakövetelés) aretradedagainsteachotherinCurrencyPairs (Valutapárok): eg. USDEUR, GBPCHF, JPYEUR, etc. • ThereareonlybrokerscalledFOREX companies/providerstradingwithsomeoneelse’s money, whowanttohedge, arbitrageorspeculate
Fractal Theory of Stock/Currency Pair Prices • Both at Stock Exchange/FOREX there is strongInformationAsimmetry (Információ aszimmetria): most investorsdonothaveanydirectinformationabout: • Changingtechnologylevel and marketing efficiency of a company (denotedwithgreen) • Plans of Governments (Kormány) and CentralBanks (Központi Bank) of 2 countries determiningat most price of a givenstock/currencypairlongterm • Theyhavetodecideallocation of theirmoneyamongstocks/currenciesfrompartialinformation and theirexpectations, sotheytendtofallinselling/buyingpanicatsuddenbigchanges. • Therefore, both Stock Exchange/FOREX arestrictlycontrolledmarketswithmanysafetyrules. • Butthiswillresultin a Stepped (Lépcsős) price (denotedwithred) update behavior: • Withoutstrongexternalimpulsebrokerstendtobuild „dreamworlds” settinguppricesbytheirexpectationsignoringslow and smallchanges of reality (eg. In „.com boom” of 2000s, smallinternet-basedcompanieswereworth more than General Electric and otherindustrialgiants) • Butwhenthedifferencebetweenthemgetstobig, they update priceinsmaller-biggersuddensteps, instead of continouschange • Aspricesareinfluencedbymanydifferentlenghtcycles (eg. 1 year:seasons .. 1day:dailyclose), suddenstepsareEmbedded (Beágyaz) intoeachotheratseverallevels, itcreatesFractal (Fraktál)-typestructures: pricestepsintimehaveself-similardetailsembeddedintoeachother • ItmakesPrice Forecasting (Árelőrejelzés) necessaryfortradingextremelydifficultFunctionEstimation (Függvény becslési) problem: • Prices of stocks/currencypairsare influencedbynumerousparameters creatingcomplexmultivariate (Sokvál- tozós) functions • Price data is veryNoisy (Zajos) dis- tortedby random disturbances, soSto- chastic (Sztochasztikus) function esti- mation is necessaryfrom a Sample (Minta) of prices • Sometimesit is hardtoassemble anyfunctionfromfuturepriceexpecta- tionscollectedfromdifferentinformati- onsources: spot price( ) canadaptto realityin more alternativefractalpath Price 400$ 300$ 200$ 100$ 12 16 8 24 20 4 Week
Basic terms of Distribution Free Estimatiors (DFE) y A x t • Distribution Free Estimators (Eloszlásfüggetlen becslési rendszer) can estimate output of a complex, multivariate function from inputs. Functional transformation is estimated from previously observed (Megfigyelt) Sample (Minta) of noisy input-output values, and it does not make any assumptions on Probability Distribution (Valószínűségi Eloszlás) of sample. It means that the function can be reasonably complex. • There are Analytic (Függvénytani) methods of Approxi-mating (Közelít) complex functions: • Taylor Series (Taylor-sor): it approximates a non-linear function (Eg. Sin(x)) with a suitably paramete-red higher order polynom in a given range • Fourier Transform (Fourier-transzformáció): a complex nonlinar function (eg. Stock price, sound wave, etc.) is assembled as weighted sum of Sin(x) typefunctions with different wavelenght and phase. • Evaluation of analytic methods: • They have relatively low Computational requirement (Számolásigény) • They require high level analytic mathematical knowledge • They are not Modular (Moduláris): modeling any additional local „bumps” or „steps” will result exponentially more complex global formulation • Therefore, we will not deal with analytic approximation methods in this course. Instead of them, we will use Rule Based Systems, RBS (Szabályalapú rendszerek)
Basic terms of Rule-Based Systems (RBS) 1 vju IF x[vil,viu] THEN y [vjl,vju] y vjl x2 vil viu y mx(rk) = 1 x x x1 • Rule-Based Distribution Free Estimators(szabály-alapú eloszlásfüggetlen becslési rendszerek) approximate Control Function (Vezérlési függvény) ( ∕ ) among Input-Output Variables (I/O változók) of Decision Space (Döntési tér) with the help of Rule Basis (Szabálybázis) containing k=1..l finite set ofrkRules(Szabály): • They Associate (Egymáshoz rendel) vi, vj values, or [vil, viu]intervals of xi i=1..n input and yo o=1..O output variables • They have Linguistic(Nyelvi) representation: IF InputVar1 = Intreval AND InputVar2 = Interval AND.. THEN OutputVar = Interval • They have Graphic (Grafikus) representation: multi-dimensional Hyperbars (Hipertéglatest) in decision space (we denote them Yellow █) • Rules of a rule basis can be Mutually Exclusive (kölcsönösen egymást kizáróak): they have no Intersection (Metszet) = Common subset (Közös részhalmaz) in decision space. Alternatively, they can be Overlapping (Átlapolóak) • All rules of the basis has mx(rk) Validity (érvényes-ségi) value, which shows whether the rule is Valid/ Fires (Tüzel) (Red█) at a given x vector (GreenO) of input variables: x rk If there is only one rule in the base to fire at any x input vector then rule basis is Non-Contradictive (Ellentmondásmentes), else Contradictive (Önel-lentmondó)
Basic terms of Rule-Based Systems (RBS) 2 mx(rk) P(xrk)= 0.025 P(xrk)= 0.025 mx(rk) P(xrk)= 0.945 P(xrk)= 0.945 mx(rk) mx(rk) P(xrk)= 0.020 P(xrk)= 0.020 mx(rk) y x2 y P(xrk)= 0.020 P(xrk)= 0.025 mx(rk) P(xrk)= 0.945 mx(rk) P(xrk)= 0.945 mx(rk) y* P(xrk)= 0.020 P(xrk)= 0.020 mx(rk) x x1 x1 • Effectiveapproximation of continousfunctionswouldrequirelargenumberofrulesinthebasetogetrea-sonableResolution (Felbontás), eatingupresources • Toavoidthis, rulescanhavewk[0,1]importanceweights. Estimatedotputyx* is computedasweighted sum of output values of firingrules. This is calledInterpolation (Interpoláció) amongrules: yx* = Skwk× mx(rk) × yk (0.1) • Interpolationenablestomodelcontinouscontrolfunc-tionswith less rules more effectively. It has 2 methods: • BayesianProbability (Bayes-i valószínűség) rules: • Itusesmutuallyexclusive, Crisp (Éles) rulebase • Wheremultiplerulescanfirebinarymx(rk){0,1}for a givenx input vector • ButsimutaneousfiringrulesOccour (Bekövetkez) onlywith a pk[0,1]Probabilityweight (Valószínűségi súly), where sum of theirprobabilities is 1creatingProbabilitydistribution (Valószínűségeloszlás): Skpk× mx(rk) = 1 (0.2) • It is supportedbyProbabilitytheory (Elmélet) • Itrequiresdataaboutprobabilities of relativelylargenumberofmutuallyexclusiverules, which is unrealistictogetinthepractice • Fuzzy RuleInference (Fuzzy szabály következtetés): • Rulebasis has overlappingrules: Boundary (Határ) of Support (Tartó) of oneruleareinthemiddleofsupportofneighbouredrules • mx(rk)[0,1]validity of a rulecanchangecontinously:It is 1inthemiddle of support and 0atboundary (wedenoteitwithyellowshading), formingnotcrisp/fuzzy rules: theyoccourcertainlybuttheirvalidity is uncertain/changinggradually • wkweightsdonotformprobabilitydistribution • Theoreticallyit is less soundmethod • Butcanmodelcomplexnonlinearcontinousfunctionsusingmuch less rules/weightstotune
Basic terms of Learning Algorithms (LA) Profit/ Assets 0.18 Liabilities/ Assets 0.14 $ 0.10 $ $ 0.80 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 0.69 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 0.30 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 0.10 $ $ $ $ $ 0.13 0.16 CashFlow/Liabilities • Manualdefinition of severalthousandrules and theirweightswiththehelp of experts is expensive, slow • ThatswhyExpert System Shells, ESS (Szakértői rendszer shell) - usingmanualBayesianprobabilisticrulebases - failedtobecomethemainstream of ArtificialIntelligence, AI (Mesterséges Intelligencia) • SoweneedLearningAlgorithms(Tanuló Algoritmus) whichcansetuprules and theirweightsautomati-callyform an X,YSampledatabase (Minta adat-bázis) of pre-viouslyObserved (Megfigyelt) j=1..m xj,yjvectors of xi i=1..n input/yo o=1..O output vars. Theyhave 2 groups: • Classification and RegressionTrees, CRT (Klasszifikációs és regressziós fák) algorithms: • Theycanestimateonlydiscretevalued (Diszkrét értékű) output variablesfromcontinous/discreteinputs (Eg. EstimateBankrupcy/Survival of a companyfromitsfinancialrates) • Building Decisiontree (Döntési fa) of connectedcrispBayesianprobabilityrules • Tryingtosetupruleboundaryvaluesateach input variable, whichseparatebest output values • Lowcomputationalreqirement • Canuseonlycrisphyperbarrules, whichareineffective modelling complexnonlinearTransversal (Átlós) controlfunctions • ArtificialNeuralNetworks, ANN (Mesterséges Neurális Hálózatok): theycanestimatecontinous/discreteoutputsfromcontinous/discreteinputs • Building kind of „implicte fuzzy rules”, withoutliguisticrepresntation and directaccesbyuser • From random initialboundaries and ruleweights • Theycanmodelcomplexnonlinear, transversalcontrolfunctions (Eg. Recognizing a letter „N” fromdots of inkscannedin a picture) effectively • At a price of difficultparametering and brutallyhighcomputationalrequirement
Content of the Presentation • Basic course info • Purpose of the Course • Course Agenda • Accessibility of course materials • FOREX Trading Bot Building Contest • Requirements, Grading and Consultation • Introduction • Basic terms of Stock Market/FOREX • Fractal Theory of Stock/Currency Pair Prices • Basic terms of Distribution Free Estimators (DFE) • Basic terms of Rule-Based Systems (RBS) • Basic terms of Learning Algorithms (LA) • Basic terms of Artificial Neural Networks (ANN) • Biologic analogy: Neurons in Human brain • Comparison with silicon-based hardware • Biologic Neuron and its Mathematical Model • Neural references
Neurons in Biology • Human brain contains 1011Neurons (Idegsejt) connected with 1016Synapses (Szinapszis) organized in Hemi-spheres (Félteke) > Cortexes (Kéreg) > Layers (Mező) > Blocks • Unisolated short Dend-rits(Ág) transmit inco-ming electric signals at 2.3m/s to Cell membra-ne(Sejtfal)of neuron col-lecting electric charge • At certain mV potential Treshold (Határérték), neuron emits electric signal by its Signal function (Jelzési függvény), which is tranmitted at 90m/s on long synapses covered with isolator Myelin (Mielin) jumping over the Ranvier-gaps (Rés) • Excited Sytaptic termi-nals (Végbunkó) emit Neurotransmitter(Ingerü-letátvivő) molecules (Eg. Acetilcolin, Opiats) • Opening ion channels on other neurons mem-brane making them ac-cumulat electric charge
wik Comparison of Neuron with Silicon-based Hardware wik bi Si(xit) ui ai xit li Sj wji wji • In the electron microscope image above we can see a neuron laid on leads of a modern microchip. Neuron is 10-12 times bigger than condensers and transistors of basic logic gates, however it can perform such a non-linear computing function, which requires hundreeds of basic logic gates in a math cooprocessor. • Moreover, neurons require much less energy and produce much less heat than silicon-based chips. Currently a 100TByte blade-supercomputer compa-rable in storage capacity with human brain - but still inferior in speed, as brain can share work among 1011 simple processors instead of 103 more difficult ones - consumes 2-3 m3space, 380V industrial current and cooling capacity of a supermarket • Human brain consumes 1500cm3 volume even storing oxygene and glucose for 15-20 secs of work, and requires 5-10 Watts of power input and cooling
wik Biologic Neuron and its Mathematical Model wik bi Si(xit) ui ai xit li Sj wji wji • Fuctions of a neuron in ANN MathematicalModel: • Non-volatileMemory (Permanens memória): jisynapsesconnectingj=1..mneuronswithi=1..nneuronsinthenetworkduringt=0..TtimeperiodstransmitsjtRsignals of jth neuron intthperiodwithchangingwjitIntensity/ Weight(Súly). Teaching/ Training(Tanítás) of net meanschangingtheinitially random wji0Rweights. Allinformationlearnt is storedassynapticweights • VolatileMemory (Rövid távú memória): a neuron aggregateswjit×sjtweightedsignals of incomingsynapsesinto a xitMembranevalue (Membrán érték) intheActivationProcess (aktivációs folya-mat),additionallytheyPassivelydecay (Passzív lecsengés) membranvalueby(1-di)DecayRate (Lecsengési ráta) tokeepmembranevaluewithin[li, ui]Lower/Upperbounds (Alsó/Felső Korlát) and smooth (Simít) itschangesintime. Thereare 2 methods of membranevalueaggregation: • Additive (Additív):xit=di(Sj(wjit×sjt)/Sj(wjit))+ +(1-di)×xit-1i=1..n, j=1..m, t=1..T (0.3) • Multiplicative (Multiplikatív): xit=diPj(sjtwjit)(1/ Sj(wjit))+ +(1-di)×xit-1, i=1..n, j=1..m, t=1..T (0.4) • Aggregatedmembranvalueemitssignalbymono-tonicincreasing (Monoton növekvő) signalfunctionwithaiinflexionpointassignaltreshold and bislope: sit = 1/ (1+e-bi×(xit-ai)), i=1..n, t=1..T (0.5)
Content of the Presentation • Basic course info • Purpose of the Course • Course Agenda • Accessibility of course materials • FOREX Trading Bot Building Contest • Requirements, Grading and Consultation • Introduction • Basic terms of Stock Market/FOREX • Fractal Theory of Stock/Currency Pair Prices • Basic terms of Distribution Free Estimators (DFE) • Basic terms of Rule-Based Systems (RBS) • Basic terms of Learning Algorithms (LA) • Basic terms of Artificial Neural Networks (ANN) • Biologic analogy: Neurons in Human brain • Comparison with silicon-based hardware • Biologic Neuron and its Mathematical Model • Neural references
References 1 • Hungarian language course notes: Notes • Neural networks biologic analogy: http://health.howstuffworks.com/brain.htm • Neural networks chatroom: http://www.geocities.com/siliconvalley/lakes/6007/Neural.htm • GNU-licensed neural software: • Source code libraries in C++, without install utility: • SNNS: http://www-ra.informatik.uni-tuebingen.de/SNNS/ (+install and user guide) • http://www.generation5.org/xornet.shtml • http://www.netwood.net/~edwin/Matrix/ • http://www.netwood.net/~edwin/svmt/ • http://www.geocities.com/Athens/Agora/7256/c-plus-p.html • http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html • http://www.cog.brown.edu/~rodrigo/neural_nets_library.html • http://www.agt.net/public/bmarshal/aiparts/aiparts.htm • http://www.geocities.com/CapeCanaveral/1624/ • http://www.neuroquest.com/ • http://www.grobe.org/LANE • http://www.neuro-fuzzy.de/ • http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/systems/cascor/ • http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/systems/qprop/ • http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/systems/rcc/
References 2 • GNU-licensed neural software: • Source code libraries in Java: • Java Neural Networks by Jochen Frölich: http://fbim.fh-regensburg.de/~saj39122/jfroehl/diplom/e-index.html (Java Class, Internet applet about Kohonen-nets, free, no GUI, Tutorial in HTML) • http://www.philbrierley.com/code • http://rfhs8012.fh-regensburg.de/~saj39122/jfroehl/diplom/e-index.html • http://neuron.eng.wayne.edu/software.html • http://www.aist.go.jp/NIBH/~b0616/Lab/Links.html • http://www.aist.go.jp/NIBH/~b0616/Lab/BSOM1/ • http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/loos • http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/DemoGNG/GNG.html • http://www.isbiel.ch/I/Projects/janet/index.html • http://www.born-again.demon.nl/software.html • http://www.patol.com/java/NN/index.html • http://www-isis.ecs.soton.ac.uk/computing/neural/laboratory/laboratory.html • http://www.neuro-fuzzy.de/ • http://openai.sourceforge.net/ • http://www.geocities.com/aydingurel/neural/ • http://www-eco.enst-bretagne.fr/~phan/emergence/complexe/neuron/mlp.html • Biologic modelling software: • Neuron: http://www.neuron.yale.edu/neuron/ (free, GUI, Win XP install, Tutorial in HTML) • Genesis: http://www.genesis-sim.org/GENESIS/ (free, GUI, Win XP install, Tutorial in HTML) • PDP++: http://www.cnbc.cmu.edu/Resources/PDP++//PDP++.html (C++ source code library, GUI, Win XP install, Tutorial in HTML)
References 3 • Decision support software: • JNNS: http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS (Simplified SNNS in Java, GUI, Win XP install, Tutorial in PDF) • JOONE: http://www.joone.org (Java, GUI, Win XP install, Tutorial in PDF) • Commercial neural decision support software: • NeuroSolutions: http://www.neurosolutions.com/download.html (60 days shareware, no save, GUI, Win XP install, Excel Add-in, Excel Wizard, MATLAB modul, Tutorial in PDF Medical, automotive appliacations) • NeurOK: http://soft.neurok.com/dm/download.shtml (Excel Add-in, C forráskód, XML-es felület, Win XP install, financial applications) • EasyNN: http://www.easynn.com/dlennp.htm (30 days shareware, GUI, Win XP install, Tutorial in HTML, financial forecasting applications) • ALNFit Pro: http://www.dendronic.com/downloadalnfit_pro.shtml (30 days shareware, GUI, Win XP install, Tutorial in PDF, pénzügyi előrejelzési applications) • Trajan: http://www.trajan-software.demon.co.uk/Downloads.htm (30 days shareware, GUI, Win XP install, Tutorial in HTML, no real application) • AINet: http://www.ainet-sp.si/NN/En/nn.htm (1 days shareware, GUI, Win 95 install, Tutorial in PDF, nincs még valós alkalmazása) • NeNet: http://koti.mbnet.fi/~phodju/nenet/Nenet/Download.html (performance limited shareware, GUI, Win 95 install, Tutorial in HTML, SOM networks oriented) • Add-Ons for Statistical Packages: • Statistica Neural Networks: https://www.statsoft.com/downloads/maintenance/download.html (no shareware, GUI, Win XP install, Tutorial in MPEG)
References 4 • Add-Ons for MATLAB: • Matlab Neural Toolbox: http://www.mathworks.com/products/neuralnet/ (No shareware) • SOM ToolBox: http://www.cis.hut.fi/projects/somtoolbox/download/ (Matlab 5, free, GUI, Tutorial in PDF) • FastICA: http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.shtml (Matlab 7, free, GUI, Tutorial in PDF) • NetLab: http://www.ncrg.aston.ac.uk/netlab/down.php (Matlab 5, free, GUI, Tutorial in PDF) • NNSysID: http://www.iau.dtu.dk/research/control/nnsysid.html (Matlab 7, free, GUI, Tutorial in PDF) • Excel Add-Ins in Financial Forecasting: • NeuroShell: http://www.neuroshell.com/ (no shareware) • NeuroXL: http://www.neuroxl.com/ (no shareware) • Comparison of 50 commercial licensed neural software: http://wwwcs.uni-paderborn.de/~IFS/Tools/neural_network_tools.htm