450 likes | 691 Views
CHALLENGES IN WIND TURBINE FLOW ANALYSIS. Vortex Structure- importance of maintaining vortex structure 10-20 D- free wake vs. prescribed wake modelsHigh Incidence on Blades- separated flows and 3-D viscous effectsUnsteady Effects- yaw, tower interaction, earth boundary layerBlade Flexibil
E N D
1. WIND TURBINE FLOW ANALYSISJean-Jacques ChattotUniversity of California DavisOUTLINE Challenges in Wind Turbine Flows
The Analysis Problem and Simulation Tools
The Vortex Model
The Hybrid Approach
Conclusion
2. CHALLENGES IN WIND TURBINE FLOW ANALYSIS Vortex Structure
- importance of maintaining vortex structure 10-20 D
- free wake vs. prescribed wake models
High Incidence on Blades
- separated flows and 3-D viscous effects
Unsteady Effects
- yaw, tower interaction, earth boundary layer
Blade Flexibility
3. CHALLENGES IN WIND TURBINE FLOW ANALYSIS
4. THE ANALYSIS PROBLEM AND SIMULATION TOOLS Actuator Disk Theory (1-D Flow)
Empirical Dynamic Models (Aeroelasticity)
Vortex Models
- prescribed wake + equilibrium condition
- free wake
Euler/Navier-Stokes Codes
- 10 M grid points, still dissipates wake
- not practical for design
5. REVIEW OF VORTEX MODEL Goldstein Model
Simplified Treatment of Wake
Rigid Wake Model
“Ultimate Wake” Equilibrium Condition
Base Helix Geometry Used for Steady and Unsteady Flows
Application of Biot-Savart Law
Blade Element Flow Conditions
2-D Viscous Polar
6. GOLDSTEIN MODEL
7. SIMPLIFIED TREATMENT OF WAKE
8. “ULTIMATE WAKE” EQUILIBRIUM CONDITION
9. BASE HELIX GEOMETRY USED FOR STEADY AND UNSTEADY FLOWS
10. APPLICATION OF BIOT-SAVART LAW
11. BLADE ELEMENT FLOW CONDITIONS
12. 2-D VISCOUS POLAR
13. NONLINEAR TREATMENT Discrete equations:
If
Where
14. NONLINEAR TREATMENT If
is the coefficient of artificial viscosity
Solved using Newton’s method
15. CONVECTION IN THE WAKE Mesh system: stretched mesh from blade
To x=1 where
Then constant steps to
Convection equation along vortex filament j:
Boundary condition
16. CONVECTION IN THE WAKE
17. ATTACHED/STALLED FLOWS
18. RESULTS: STEADY FLOW
19. RESULTS: YAWED FLOW
20. HYBRID APPROACH
21. HYBRID METHODOLOGY
22. RECENT PUBLICATIONS J.-J. Chattot, “Helicoidal vortex model for steady and unsteady flows”, Computers and Fluids, Special Issue, 35, : 742-745 (2006).
S. H. Schmitz, J.-J. Chattot, “A coupled Navier-Stokes/Vortex-Panel solver for the numerical analysis of wind turbines”, Computers and Fluids, Special Issue, 35: 742-745 (2006).
J. M. Hallissy, J.J. Chattot, “Validation of a helicoidal vortex model with the NREL unsteady aerodynamic experiment”, CFD Journal, Special Issue, 14:236-245 (2005).
S. H. Schmitz, J.-J. Chattot, “A parallelized coupled Navier-Stokes/Vortex-Panel solver”, Journal of Solar Energy Engineering, 127:475-487 (2005).
J.-J. Chattot, “Extension of a helicoidal vortex model to account for blade flexibility and tower interference”, Journal of Solar Energy Engineering, 128:455-460 (2006).
S. H. Schmitz, J.-J. Chattot, “Characterization of three-dimensional effects for the rotating and parked NREL phase VI wind turbine”, Journal of Solar Energy Engineering, 128:445-454 (2006).
J.-J. Chattot, “Helicoidal vortex model for wind turbine aeroelastic simulation”, Computers and Structures, to appear, 2007.
23. CONCLUSIONS
24. APPENDIX AUAE Sequence QV=8 m/s Dpitch=18 deg CN at 80%
25. APPENDIX AUAE Sequence QV=8 m/s Dpitch=18 deg CT at 80%
26. APPENDIX AUAE Sequence QV=8 m/s Dpitch=18 deg
27. APPENDIX AUAE Sequence QV=8 m/s Dpitch=18 deg
28. APPENDIX BOptimum Rotor R=63 m P=2 MW
29. APPENDIX BOptimum Rotor R=63 m P=2 MW
30. APPENDIX BOptimum Rotor R=63 m P=2 MW
31. APPENDIX BOptimum Rotor R=63 m P=2 MW
32. APPENDIX BOptimum Rotor R=63 m P=2 MW
33. APPENDIX BOptimum Rotor R=63 m P=2 MW
34. APPENDIX BOptimum Rotor R=63 m P=2 MW
35. APPENDIX CHomogeneous blade; First mode
36. APPENDIX CHomogeneous blade; Second mode
37. APPENDIX CHomogeneous blade; Third mode
38. APPENDIX CNonhomogeneous blade; M’ distribution
39. APPENDIX CNonhomog. blade; EIx distribution
40. APPENDIX CNonhomogeneous blade; First mode
41. APPENDIX CNonhomogeneous blade; Second mode
42. APPENDIX CNonhomogeneous blade; Third mode
43. TOWER SHADOW MODELDOWNWIND CONFIGURATION