1 / 27

Mutigrid Methods for Solving Differential Equations

Mutigrid Methods for Solving Differential Equations. Ferien Akademie ’05 – Veselin Dikov. Multigrid Methods . Agenda Model problem Relaxation. Smoothing property Elements of Multigrid Multigrid schemes. Ferien Akademie ’05 Veselin Dikov.

kent
Download Presentation

Mutigrid Methods for Solving Differential Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mutigrid Methods for Solving Differential Equations Ferien Akademie ’05 – Veselin Dikov

  2. MultigridMethods Agenda • Model problem • Relaxation. Smoothing property • Elements of Multigrid • Multigrid schemes Ferien Akademie ’05 Veselin Dikov

  3. MultigridMethods Model Problem • 1D boundary problem of steady state temperature a long a uniform rod • Discretization in n points, step h = 1/n Ferien Akademie ’05 Veselin Dikov

  4. MultigridMethodsModel Problem • Av = f, where and • Stencil notation • A is Symmetric positive definite Ferien Akademie ’05 VeselinDikov

  5. MultigridMethods Agenda • Model problem • Relaxation. Smoothing property • Elements of Multigrid • Multigrid schemes Ferien Akademie ’05 Veselin Dikov

  6. MultigridMethodsIterative Methods • Iterative vs Direct methods More about iterative methods • Jacobi and Gauss-Seidel methods • Smoothing property Ferien Akademie ’05 VeselinDikov

  7. MultigridMethodsSmoothing Property • Error along the domain After 35 sweeps with weighted Jacobi Error was smoothed Ferien Akademie ’05 VeselinDikov

  8. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes • k – wave number Ferien Akademie ’05 VeselinDikov

  9. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes k = 1 k = 2 k = 12 k = 7 Ferien Akademie ’05 VeselinDikov

  10. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes • smooth modes - • oscillatory modes - Ferien Akademie ’05 VeselinDikov

  11. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes Modified model problem • f = 0, σ = 0 Au = 0 • exact solution: u = 0 • error: e = u – v = -v we can trace the error! Ferien Akademie ’05 VeselinDikov

  12. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes Modified model problem Weighted Jacobi relaxation • wJacobi step • error Ferien Akademie ’05 VeselinDikov

  13. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes Modified model problem Weighted Jacobi relaxation Three experiments • we relax with wJacobi with ω = 2/3 on initial guesses respectively: # iterations Ferien Akademie ’05 VeselinDikov

  14. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes Modified model problem Weighted Jacobi relaxation Three experiments • repeat the experiment with: ω = 2/3 and initial guess # iterations Ferien Akademie ’05 VeselinDikov

  15. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes Modified model problem Weighted Jacobi relaxation Three experiments • Explanation • Rω has the same eigenvectors as A and they are the same as the wave vectors • Recall that for the error e(m) = Rme(0) • Eigenvalues of Rω ? Ferien Akademie ’05 VeselinDikov

  16. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes Modified model problem Weighted Jacobi relaxation Three experiments • Explanation Eigenvalue wavenumber k Ferien Akademie ’05 VeselinDikov

  17. MultigridMethodsSmoothing Property • Smoothing property explained in four steps Fourier modes Modified model problem Weighted Jacobi relaxation Three experiments • Explanation • Smoothing property • Fast damping of oscillatory error modes • Common for all iterative methods • How to overcome the bad performance effect over smooth error modes? Ferien Akademie ’05 VeselinDikov

  18. MultigridMethods Agenda • Model problem • Relaxation. Smoothing property • Elements of Multigrid • Multigrid schemes Ferien Akademie ’05 Veselin Dikov

  19. MultigridMethodsElements of Multigrid • Element I: A smooth wave looks more oscillatory on a coarser grid • Aliasing: k looks like (n-k) Ferien Akademie ’05 VeselinDikov

  20. finest grid coarsest grid transfer the coarse grid result to the finer grid for the initial guess Relax Relax Relax MultigridMethodsElements of Multigrid • Element II: Nested Iterations • Problems? Ferien Akademie ’05 VeselinDikov

  21. MultigridMethodsElements of Multigrid • Element III: Correction scheme • Residual equation: Ae = r • The scheme: • Relax on Au = f on to obtain an approximation . • Compute . • Relax on Ae = r on to obtain an approximation to the error, . • Correct the approximation . Ferien Akademie ’05 VeselinDikov

  22. MultigridMethodsElements of Multigrid • Element IV: Interpolation and restriction • Interpolation : • Restriction : Injection: Full weighting: • Variational property: Ferien Akademie ’05 VeselinDikov

  23. MultigridMethods Agenda • Model problem • Relaxation. Smoothing property • Elements of Multigrid • Multigrid schemes Ferien Akademie ’05 Veselin Dikov

  24. MultigridMethodsTwo-Grid • Two-Grid = Corr.Scheme+Interpolation+Restriction • Relax times on on with initial guess • Compute and restrict . • Solve on . • Interpolate and correct . • Relax times on on with initial guess Ferien Akademie ’05 VeselinDikov

  25. MultigridMethods Two-Grid -> V-Cycle • Two-Grid Scheme • V-Cycle = Recursive Two-Grid Scheme V-Cycle W-Cycle Ferien Akademie ’05 VeselinDikov

  26. MultigridMethods Full Multigrid(FMG) • FMG = V-Cycle + nested iterations FMG Ferien Akademie ’05 VeselinDikov

  27. MultigridMethods Costs • V-Cycle costs Storage Computational cost • FMG computational costs • Speedup because working on smaller domains Ferien Akademie ’05 VeselinDikov

More Related