400 likes | 478 Views
Outline. TCP-AQM TCP-AQM/IP Fairness-throughput tradeoff. with Jiantao Wang, Lun Li and John Doyle. HOT (Doyle et al) Minimize user response time Heavy-tailed file sizes. WWW, Email, Napster, FTP, …. Applications TCP/AQM. Duality model (Kelly, Low et al) Maximize aggregate utility.
E N D
Outline • TCP-AQM • TCP-AQM/IP • Fairness-throughput tradeoff with Jiantao Wang, Lun Li and John Doyle
HOT (Doyle et al) • Minimize user response time • Heavy-tailed file sizes WWW, Email, Napster, FTP, … Applications TCP/AQM Duality model (Kelly, Low et al) • Maximize aggregate utility IP Shortest-path routing • Minimize path costs Transmission Power control • Maximize channel capacity Ethernet, ATM, POS, WDM, … Protocol Decomposition
x y R F1 G1 Network AQM TCP GL FN q p RT Reno, Vegas IP routing DT, RED, … Network model
F1 G1 FN GL Network model x y Rf(s) Network AQM TCP q p Rb’(s)
Equilibrium • Performance • Throughput, loss, delay • Fairness Dynamics • Local stability • Global stability Methodology Protocol (Reno, Vegas, RED, REM/PI…)
Result[L 00]:(x*,p*) primal-dual optimal iff Summary: duality model • Flow control problem [Kelly, Malloo, Tan 98] • Primal-dual algorithm Reno, Vegas RED, REM/PI, AVQ • TCP/AQM • Maximize utility with different utility functions
Example utility functions [Mo, Walrand ’00]
KMT’s primal algorithm • Dynamic source • Static link Theorem[Kelly, Mauloo, Tan ’98] • Global asymptotic stability in absence of delay
Delay stability • Dynamic source • Static link • Delay model
Delay stability • Dynamic source • Static link Theorem[Vinnicombe ‘00] • Local asymptotic stability if See also: [Johari, Tan ‘01] [Massoulie ’00]
LL’s dual algorithm • Static source • Dynamic link Theorem[L, Lapsley ’99] • Global asymptotic stability in absence of delay • Global asymptotic stability in presence of delay and other asynchronism, provided g small
Delay stability • Static source • Dynamic link Theorem[Paganini, Doyle, L ‘01] • Locally asymptotically stable for arbitrary delay and capacity if
Recap Primal Dual Dynamics source link Fairness arbitrary limited Utilization low high Global stability no delay no delay Local stability small delay arbitrary delay
IPAM Workshop 2002 • Add slow link dynamics to primal • Kunniyur, Srikant 2000, 2002 • Vinnicombe 2002 • Add slow source dynamics to dual • Paganini, et al 2002 • Choe, Low 2002
KK’s primal-dual algorithm • Dynamic source • Dynamic link (AVQ) Theorem [Kunniyur, Srikant ’00, ’03] • Global asymptotic stability without delay • Local asymptotic stability if, in addition,
Paganini’s primal-dual algorithm • Static source • Dynamic link Theorem[Paganini, et al ’02] • Locally asymptotically stable if, in addition,
x y Rf(s) F1 G1 Network AQM TCP FN GL q p Rb’(s) Theorem(Choe & L, ’02) Provided R is full rank, feedback loop is locally stable if Stability: Stabilized Vegas
x y Rf(s) F1 G1 Network AQM TCP FN GL q p Rb’(s) Stability: Stabilized Vegas Application • Stabilized TCP with current routers • Queueing delay as congestion measure has right scaling • Incremental deployment with ECN
arbitrary high small Recap Primal Dual Dynamics source link Fairness arbitrary limited Utilization low high Global stability no delay no delay Local stability small delay arbitrary delay
Flow level: Reno, HSTCP, STCP, FAST • Commonflow level dynamics! window adjustment control gain flow level goal = • Different gain k and utility Ui • They determine equilibrium and stability • Different congestion measure pi • Loss probability (Reno, HSTCP, STCP) • Queueing delay (Vegas, FAST)
FAST algorithm Theorem (Jin, Wei, Low ‘03) In absence of delay, for single link: • Mapping from w(t) to w(t+1) is contraction • Global exponential convergence • Full utilization after finite time • Utility function: ai log xi (proportional fairness)
New development • FAST TCP • Cheng Jin • David Wei • Global stability with delay • John Wen, Murat Arcak • Antonis Papachristodoulou, John Doyle • Zhikui Wang, Fernando Paganini • Sankar Kunniyur, R. Srikant • Stochastic models • Peerapol Tinnakornsrisuphap, Armand Makowski
Outline • TCP-AQM • TCP-AQM/IP • Wang, Li, Low, Doyle, Infocom ‘03 • Fairness-throughput tradeoff
HOT (Doyle et al) • Minimize user response time • Heavy-tailed file sizes WWW, Email, Napster, FTP, … Applications TCP/AQM Duality model (Kelly, Low et al) • Maximize aggregate utility IP Shortest-path routing • Minimize path costs Transmission Power control • Maximize channel capacity Ethernet, ATM, POS, WDM, … Protocol Decomposition
x y R F1 G1 Network AQM TCP GL FN q p RT Reno, Vegas IP routing DT, RED, … Network model
Shortest path routing! Motivation Can TCP/IP maximize utility?
Proof Reduce integer partition to primal problem Given: integers {c1, …, cn} Find: set A s.t. TCP-AQM/IP Theorem(Wang, et al 03) Primal problem is NP-hard
TCP-AQM/IP Theorem(Wang, et al 03) Primal problem is NP-hard • Achievable utility of TCP/IP? • Stability? • Duality gap? Conclusion: Inevitable tradeoff between • achievable utility • routing stability
destination routing price static apl(0) apl(1) TCP/AQM IP … … r(t),r(t+1), r(0) r(1) Ring network • Single destination • Instant convergence of TCP/IP • Shortest path routing • Link cost = a pl(t) + b dl r
destination apl(0) apl(1) TCP/AQM IP … … r(t),r(t+1), r(0) r(1) Ring network • Stability:ra? • Utility: Va ? r* : optimal routing V* : max utility r
destination Ring network • Stability:ra? • Utility: Va ? link cost = a pl(t) + b dl Theorem(Infocom 2003) • “No” duality gap • Unstable if b = 0 starting from anyr(0), subsequent r(t) oscillates between 0 and 1 r
destination r Ring network • Stability:ra? • Utility: Va ? link cost = a pl(t) + b dl Theorem(Infocom 2003) • Solve primal problem asymptotically as
destination r Ring network • Stability:ra? • Utility: Va ? link cost = a pl(t) + b dl Theorem(Infocom 2003) • a large: globally unstable • a small: globally stable • a medium: depends on r(0)
random graph 20 nodes, 200 links Achievable utility General network Conclusion: Inevitable tradeoff between • achievable utility • routing stability
Outline • TCP-AQM • TCP-AQM/IP • Fairness-throughput tradeoff • Tang, Wang, Low, Allerton ‘03
Example utility functions [Mo, Walrand ’00]
Fairness [Mo, Walrand ’00] Definition An allocation is fair if a is large
Efficiency Definition An allocation is efficient if is large
New development • FAST TCP • Cheng Jin • David Wei • Global stability with delay • John Wen, Murat Arcak • Antonis Papachristodoulou, John Doyle • Zhikui Wang, Fernando Paganini • Sankar Kunniyur, R. Srikant • Stochastic models • Peerapol Tinnakornsrisuphap, Armand Makowski • Fairness-throughput tradeoff • Jiantao Wang, Kevin Tang, SL