1 / 31

Tormentas cálidas en Chile central René D. Garreaud Departamento de Geofísica

Tormentas cálidas en Chile central René D. Garreaud Departamento de Geofísica Universidad de Chile. 28 de Mayo 2014 – DMC, Santiago. Agradecimientos: Fondecyt 1110169, José Rutllant , Robert Rondanelli. Temario Revisión de trabajos previos

kerry-chase
Download Presentation

Tormentas cálidas en Chile central René D. Garreaud Departamento de Geofísica

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tormentas cálidas en Chile central René D. Garreaud Departamento de Geofísica Universidad de Chile 28 de Mayo 2014 – DMC, Santiago Agradecimientos: Fondecyt 1110169, José Rutllant, Robert Rondanelli

  2. Temario • Revisión de trabajos previos • Datos (Diarios DMC; 15’ DGF; CFSR; TMI/SMI…) • Variabilidad de la línea de nieves e impactos hidro. • Tormentas cálidas y frías • Caso de estudio (Julio 2006) • Análisis compuesto • Modelo conceptual y conclusiones

  3. Background Sistema Frontal + DepresiónExtratropical Martes 20 de Mayo de 2014 ¿Que elemento(s) de gran escala son un buen predictor de la cantidad de precipitación?

  4. Background Falvey & Garreaud 2007: Composite fields and Radiosonde profiles (local conditions) of CCh precipitation events.

  5. Background Viale and Nuñez 2011: NNR Composite fields of CCh precipitation events. Extreme events exhibit sharper / more intense features than intense events.

  6. Background Barret et al. 2012: Composite fields (QS sfc. Wind, TRMM, Z500, etc.) of CCh precipitation events. More amplified/slower systems cause more precipitation

  7. Background Falvey & Garreaud 2007 Statistically robust correlation between CCh rainfall and low-level zonal moisture transport

  8. Background Garreaud et al. 2013. Using PRECIS-ERA40 data, they show that strong (local) correlation between 850 hPa zonal wind and precipitation extends along south-central Chile because of the orographic enhancement in the windward side of the Andes a. r(U850,P) (a) (P,U850)Anual -0.8 -0.4 0 +0.4 +0.8

  9. Eventos de precipitación también difieren en su temperatura 20 15 10 5 0 2900 2090 1320 Temperatura [°C] Altura Iso. 0°C [m] Tormenta fría Precipitación [mm/15 min] 20 15 10 5 0 2900 2090 1320 Altura Iso. 0°C [m] Temperatura [°C] Tormenta Cálida Precipitación [mm/15 min] 1 día ¿Es diferente el ambiente sinóptico entre TF y TC? ¿Cuan hábiles son los MPN en predecir Temp-Tormenta?

  10. Hydrological Impacts Maipo en el Manzano riverbasin Potential Volume: P(h)dA Mean FL 3 May 1993 11 Jul 2006 Mean FL Area below snow V=1 PDF Freezinglevel at SDO duringrainfallevents in Stgo V=2 snow FL Mean FL Height [m ASL]

  11. Freezing level variability during winter storms (MJJAS) Ground based: Hsfc + Tm/sat Interpolated from Radisonde

  12. Warm and cold winter rainstorms Warmstorms (30%) Coldstorms (65%)

  13. Warm and cold winter rainstorms 6 4 2 0 -2 Composite local conditions (DGF, 30 min, 2004-11) during cold (44) and warm (22) rainstorms Surfacepressure [hPa] [T]P12.5°C  H0  2900 m Air Temperature [°C] [T]P7.0°C  H0  1700 m 2 1 0 Precipitation Time [hrwrtstormonset]

  14. Tormentas en Nahuelbuta +3 +2 +1 0 -1 -2 +2 +1 0 -1 -2 °C  T(4000 m) °C T(1200 m) +2 +1 0 -1 -2 Frontal passage °C  SAT 4 3 2 1 0 Rainfall Obs. Time [hr]

  15. Uniform Precipitation Group exhibits colder conditions (H0 = 1900 m) Mountain Enhanced Precipitation Group exhibits warmer conditions (H0 = 2900 m)

  16. DGF station Case of study: July 2006 Sto. Domingo radiosonde Sto. Domingo radiosonde

  17. Case of study: July 2006 Upperbasinstations Lowerbasinstations

  18. Case of study: July 2006 Wind profiles at Santo Domingo 12Z 11Jul 2006 Climo. data from FG2007

  19. Case of study: July 2006 14Z 11jul2006 GOES12 IR2 + CFSR 500 hPawinds 14Z 07jul2006

  20. Case of study: July 2006 12 July 2006 GOES-12 VIS (1445 UTC) + TRMM_3B42 dailyprecip. 11 July 2006

  21. Case of study: July 2006 950 hPawinds, temperature and precipitation 18Z 11 Jul 2006

  22. Case of study: July 2006 Lon-heightcrosssections at 33°W, 18Z 11 Jul 2006

  23. Case of study: July 2006 Lat-heightcrosssections at 77°W, 18Z 11 Jul 2006

  24. Case of study: July 2006 200 hPawinds, IPW and SLP. 12Z 11 Jul 2006

  25. 12z03jul 12z05jul 12z07jul Case of study: July 2006 12z09jul 12z11jul 12z12jul

  26. Case of study: July 2006 (b) SMI vapor and QS winds AM pass 11 Jul 2011 (a) TMI vapor and QS winds

  27. TRMM_3B42 July 2006 07jul 08jul 09jul Case of study: July 2006 10jul 11jul 12jul

  28. Hovmollersection at 55°S of SLP Case of study: July 2006

  29. Large scale composite analysis: IPW & 200 hPa wind CFSR averages for cold (44) and warm (22) rainstorms

  30. Large scale composite analysis: SLP’ & T500’ CFSR averages for cold (44) and warm (22) rainstorms

  31. Conceptual Model • Rainfall at and behind cold front • H0 < 2500 m ASL • Prefrontal rainfall up in the Andes • Well defined baroclinic wave • Deep cyclone off southern Chile • NW flow aloft • Strong topographic blocking • Northerly low-level jet • Rainfall well ahead cold front • H0 > 2500 m ASL • Strong W flow aloft • Conditionally unstable environment • Reduced topographic blocking • Wide, deep layer of ascent • Weak trough farther south • Blocking anticyclone farther west • TransPacific zonal jet and troposheric river

More Related