1 / 28

Electronic structure and magnetic properties of II-VI DMS

Electronic structure and magnetic properties of II-VI DMS. Thomas Chanier ISEN Engineer – PhD student IM2NP, MARSEILLE, France Co-workers : R. Hayn, M. Sargolzaei, I. Opahle, M. Lannoo. PhD defense - 29/08/2008 – Faculté de St-Jérôme, Marseille, France. Introduction.

kesler
Download Presentation

Electronic structure and magnetic properties of II-VI DMS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electronic structure and magnetic properties of II-VI DMS Thomas Chanier ISEN Engineer – PhD student IM2NP, MARSEILLE, France Co-workers : R. Hayn, M. Sargolzaei, I. Opahle, M. Lannoo PhD defense - 29/08/2008 – Faculté de St-Jérôme, Marseille, France

  2. Introduction • Failure of Moore’s law : • The number of transistors / inch² on mP chips doubles every two years • Current technology : • Based on electron charge • Atomic scale : • Quantum nature of the electron • Needed : new science to replace classical micro- electronics http://public.itrs.net/ LG<50 nm (~1000 at.) d~LG² MOS FET Fe corral on Au TEM image STM image, IBM

  3. Spintronics • SpinFET - Datta and Das, APL 56 665 (1990) • Principals : • Rashba’s precession • Current challenge : • Injection of spin-polarized current in the SC channel • Unsuccessful attempts : • S and D in FM metal : weak injection due to conductivity mismatch with SC Schmidt et al., PRB 62 R4790 (2000) • Alternative solution for spin injection : DMS : diluted magnetic SC - Classical : SC doped with magnetic ions (TM or rare earth) - New class of DMS ? magnetic intrinsic defects (vacancy, interstitial) Needed : FM at room temperature for spintronic applications Scientific American

  4. ZB W Basics on II-VI DMS • Host SC : covalent bonds Zn2+─ A2- • Substitutional impurity : TM2+ config. : [Ar] 3dn 4s0 : • - for Co, n=7 → S = 3/2 • - for Mn, n=5 → S = 5/2 • ZB : only 1 NN exchange integral JNN • W : 2 NN exch. Int. : in-plane Jin&out-of-plane Jout Ref. 1 : Jamieson, J. Phys. Chem. Solids 41 963 Ref. 2 : CRC Handbook of Chemistry and Physics Ref. 3 : Sabine, Acta Cryst. B 25 2254 Ref. 4 : Reeber, JAP 38 1531 Ref. 5 : Yim, J. Electr Soc Sol-St.Sci. Tech 119 381

  5. State of the art • l Dietl (2001) • FM prediction for ZnTMO : • - Sato et al., Physica E 10 251 (2001) • LSDA : FM JNN in ZnCoO • - Dietl et al., PRB 63 195205 (2001) • Zener model, p-type ZnMnO • AFM & FM competition for ZnCoO & AFM for ZnMnO : • - Lee et al., PRB 69 085205 (2004) • - Sluiter et al. , PRL 94 187204 (2005) • LSDA + pseudopotential • BUT : in contrast to experiments Sati (2007) • Our study : AFM NN exchange constants • - LSDA+U : Hubbard-type correction to LSDA → AFM JNN • T. Chanier et al., PRB 73 134418 (2006) • Predictions confirmed: AFM interactions in ZnCoO, • P. Sati et al.,PRL 98 137204 (2007) LSDA+U

  6. d-d exchange Hamiltonian • Heisenberg Hamiltonian : • J > 0 → FM • J < 0 → AFM • Comparison of ∆E in the Heisenberg model with ∆ETotal obtained from FM and AFM First-principle calculations : • chain : • pair : Where ST = 2S the total spin for two magnetic impurities of spin S • First-principle calculations : • FPLO : full potential local orbital approximation (Koepernic et al., PRB 59 1743) • LSDA : Perdew-Wang 92 Vxc functional (Perdew and Wang, PRB 45 13244) • LSDA+U : atomic limit scheme (Anisimov et al., PRB 44 943) • No additional carrier codoping

  7. Supercell approach

  8. Exchange constants for ZnO:Co • LSDA : competition between AFM and FM interactions for the two type of NN in constrast to exp. Necessity of better taking into account the strong electron correlation in the TM 3d-shell • LSDA+U : AFM exchange constants for the two type of NN in quantitative agreement with exp. We use the same Slater parameters as those of CoO Two realistic values for U = 6 and 8 eV Ref. : Anisimov et al., PRB 44 943 (1991) • Our values : Jin = -1.7 ± 0.3 meV, Jout = -0.8 ± 0.3 meV • Experiments : • Tcw of magnetic susceptibility : Jave = -33 K = -2.8 meV • INS : Jin = -2.0 meV, Jout = - 0.7 meV Ref. : Yoon et al., JAP 93 7879 (2003), Stepanov, private comm. (2008) Ref. 1 : Lee and Chang, PRB 69 085205 (2004) (LSDA, pseudopotential) Ref. 2 : Sluiter et al., PRL 94 187204 (2005) (LSDA, pseudopotential)

  9. Exchange constants for ZnO:Mn • LSDA : underestimation of AFM exchange constants in either type of NN • LSDA+U : AFM exchange constants in quantitative agreement with experiments (SP of MnO, U = 6 & 8 eV) • Our values : Jin = -1.8 ± 0.2 meV,Jout = -1.1 ± 0.2 meV • Experimental values : two values of J (MST) J1 = -2.08 meV,J2 = -1.56 meV Ref. : Gratens et al., PRB 69 125209 (2004) Ref. 2 : Sluiter et al., PRL 94 187204 (2005)

  10. Spin density Co-O-Co plane, in-plane NN Co-O-Co plane, out-of-plane NN

  11. JNN for ZB II-VI DMS • Chemical trends of JNN: Supercells TM2Zn6A8 (ZB) AIIBVI:Mn AIIBVI:Mn - U from Ref. : Gunnarson et al., PRB 40 10407 (1989) - Charge transfer from FPLO :

  12. sp-d exchange constants • Chemical trends of Na and Nb : Supercells TMZn3A4 (ZB) • Mean Field Approx. : With N the cation concentration sp-d exch cst for CBE and VBH at G

  13. LSDA+U DOS

  14. LSDA+U DOS

  15. LSDA+U DOS

  16. LSDA DOS

  17. Main features of DOS • The upper VB is formed by a semi-circle of width W • LSDA : BS & inverted FM VB spin splitting DEv = Ev - Ev > 0 • too high position of TM 3d level, always a bound state • LSDA+U : formation of a BS & FM DEv if Vpd > Vpd • If U , the occupied 3d levels are shifted by ~ -U/2from VBM , 0 = EBS-Ev • Hyp. : Vpd ≠ f(U) • mm c e l

  18. Analytical model • Bethe Lattice Model : - TB Hamiltonian : - Basis set : - Hamiltonian matrix : - Local Creen Funct. : (t2g 3d orb. for TM2+) (t2 p orb. for A2-)

  19. Resolution • Host Green function • Local Green function • No bound state : f0 < a & |e0| < |a-f0| • A bound state out of continuum : f0 > a & |e0| > |a-f0| • 2 bound states on both side of the continuum : f0 > a & |e0| < |a-f0| Vpd = 0.90 eV Vpd = 0.90 eV a = 2 eV, e0= 1 eV a = 2 eV, e0= 1 eV

  20. Resolution • Host Green function • Local Green function • No bound state : f0 < a & |e0| < |a-f0| • A bound state out of continuum : f0 > a & |e0| > |a-f0| • 2 bound states on both side of the continuum : f0 > a & |e0| < |a-f0| Vpd = 0.90 eV Vpd = 0.90 eV a = 2 eV, e0= 1 eV a = 2 eV, e0= 1 eV

  21. Resolution • Host Green function • Local Green function • No bound state : f0 < a & |e0| < |a-f0| • A bound state out of continuum : f0 > a & |e0| > |a-f0| • 2 bound states on both side of the continuum : f0 > a & |e0| < |a-f0| Vpd = 0.90 eV a = 2 eV, e0= 1 eV

  22. Formation of a Zhang-Rice Singlet • Condition of formation of a bound state : - Necessary condition for a BS : f0 > a=W/2 & e0 not too deep - for ZnO:TM : • Two bound states :

  23. Results • Curve fitting - Results : - Supercell MnZn31O32 : - Harrison’s parametrization :

  24. Vpd for Host II-VI SC c - Host SC DOS - Critical hybridization param. : - Harrison’s parametrization :

  25. Vacancy in II-VI SC : ab initio study - Basis set : - NN relaxation : - Electronic structure : - LSDA results : DE = ELDA-ELSDA Zn4A3 calc. : Neutral anion vacancy is non-magnetic

  26. Analytical model • Molecular cluster model : - sp3 molecular orbitals : Yi (i=1..4) - Hamiltonian : • Group Theory : SALC of Yi - monoelectronic states : A1 and T2 representations - polyelectronic states : direct product group

  27. Results • Monoparticule eigenenergies : • Biparticle eigenenergies : D = -4 & 4 eV, U = 4 eV, V = 1 eV VZn0 in ZnO : S = 1 state characterized by EPR Ref. : D. Galland et al., Phys. Lett. 33A, 1 (1970) VA0 in ZnO, S = 0VZn0 in ZnO, S = 1

  28. Conclusion • Mn- and Co-doped DMS • Necessity of taking into account the strong electron correlation on the TM 3d shell. • The LSDA+U exchange constants are in quantitative agreement with experiments. • Importance of the hybridation parameter Vpd to describe correctly the DOS of DMS. • Single vacancy in II-VI SC • Neutral cation vacancy in more ionic ZnO carries a spin S = 1 in agreement with experiments. • This state is quasi-degenerate with a S = 0 state in other less ionic II-VI SC. • Neutral anion vacancy is non-magnetic. Publications : T. Chanier et al. , PRB 73 134418 (2006) ; T. Chanier et al. , PRL 100 026405 (2008)

More Related