1 / 33

Efficient Simulations of Gas-Grain Chemistry Using Moment Equations

Efficient Simulations of Gas-Grain Chemistry Using Moment Equations. M.Sc. Thesis by Baruch Barzel preformed under the supervision of Prof. Ofer Biham. Complexity in the Universe. Complexity in the Universe. Horse-Head Nebula. The Interstellar Clouds (ISC). The Interstellar Clouds.

kevyn-knox
Download Presentation

Efficient Simulations of Gas-Grain Chemistry Using Moment Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Efficient Simulations of Gas-Grain Chemistry Using Moment Equations M.Sc. Thesis by Baruch Barzel preformed under the supervision of Prof. Ofer Biham

  2. Complexity in the Universe

  3. Complexity in the Universe Horse-Head Nebula

  4. The Interstellar Clouds (ISC)

  5. The Interstellar Clouds • Gas Temperature: 50 -150 K • Density: ~10 -1000 (atoms cm-3) • Molecular and atomic H

  6. Complex Molecules Star Formation The Role of H2 H2 Complexity

  7. Observed Production Rates in ISC: RH ~ 10-15 (mol cm-3s-1) 2 The H2 Puzzle H2 Production in the gas phase: H + H → H2 Gas-Phase Reactions Cannot Account for the Observed Production Rates

  8. The Solution

  9. The Interstellar Dust Grains • Composition: • Carbons, Silicates, Olivine, H2O, SiC • Temperature: ~5-20 K • Size Range: • 10-6-10-3 (cm) → 100-108 sites • Activation Energies: (meV)

  10. d‹NH› dt = FH - WH‹NH› - 2AH‹NH›2 -E0 -E1 kBT kBT WH = n e RH= AH‹NH›2 (mol s-1) AH = (1/S)n e 2 Incoming flux Recombination Desorption The Rate Equation The Production Rate of H2 Molecules:

  11. d‹NH› dt = FH - WH‹NH› - 2AH‹NH›2 When the Rate Equation Fails Mean-field approximation • Neglects fluctuations • Ignores discretization Not valid for small grains and low flux

  12. Flux term: FH[PH(NH-1) - PH(NH)] Desorption term: WH[(NH+1)PH(NH+1) - NHPH(NH)] FH WH AH Reaction term: AH[(NH+2)(NH+1)PH(NH+2) - NH(NH-1)PH(NH)] Probabilistic Approach

  13. = FH[PH(NH-1) - PH(NH)] + WH[(NH+1)PH(NH+1) - NHP(NH)] + AH[(NH+2)(NH+1)PH(NH+2) - NH(NH-1)PH(NH)] dPH(NH) dt RH=AH (‹NH2› - ‹NH›) S ‹NH›=S NHPH(NH) 2 NH= 0 The Master Equation

  14. FH = 10-10S(atoms s-1) E0 = 22 E1=32 (meV) Tsurface= 10 K RH vs. Grain Size 2

  15. 1 3 2 H H2 H2O OH OH O O2 Complex Reactions The parameters: Fi ; Wi ; Ai (i=1,2,3)

  16. = F1 - W1‹N1› - 2A1‹N1›2 - (A1+A2)‹N1›‹N2› - (A1+A3)‹N1›‹N3› d‹N1› dt d‹N2› dt d‹N3› dt =F2 – W2‹N2› - 2A2‹N2›2 - (A1+A2)‹N1›‹N2› = F3 - W3‹N3› - (A1+A3)‹N1›‹N3›+(A1+A2)‹N1›‹N2› The Rate Equations

  17. P(N1,N2,N3) = S Fi[P(…,Ni-1,…)-P(N1,N2,N3)] +S Wi[(Ni+1)P(..,Ni+1,..)-NiP(N1,N2,N3)] +S Ai[(Ni+2)(Ni+1)P(..,Ni+2,..)-Ni(Ni-1)P(N1,N2,N3)] S + (A1+A2)[(N1+1)(N2+1)P(N1+1,N2+1,N3-1)-N1N2P(N1,N2,N3) S + (A1+A3)[(N1+1)(N3+1)P(N1+1,N2,N3+1)-N1N3P(N1,N2,N3) 3 i=1 3 i=1 2 i=1 The Master Equation

  18. P(N1,N2,N3) = S Fi[P(…,Ni-1,…)-P(N1,N2,N3)] +S Wi[(Ni+1)P(..,Ni+1,..)-NiP(N1,N2,N3)] +S Ai[(Ni+2)(Ni+1)P(..,Ni+2,..)-Ni(Ni-1)P(N1,N2,N3)] S + (A1+A2)[(N1+1)(N2+1)P(N1+1,N2+1,N3-1)-N1N2P(N1,N2,N3) S + (A1+A3)[(N1+1)(N3+1)P(N1+1,N2,N3+1)-N1N3P(N1,N2,N3) 3 i=1 3 i=1 2 i=1 Rij = (Ai+Aj)‹NiNj› Rii = Ai(‹Ni2› - ‹Ni›)

  19. The Rate vs. The Master Rate equations: • Mean field approximation • High efficiency • Not reliable for surface reactions (at low coverage) Master equation: • Microscopic probability distribution • Accurate model of grain surface reactions • Low efficiency (exponential growth) • Hard work

  20. 8 ‹NHk› = SNHkPH(NH) NH=0 ‹NH› = FH + (2AH - WH)‹NH›- 2AH‹NH2› ‹NH2› = FH + (2FH + WH - 4AH)‹NH› + (8AH - WH)‹NH2› - 4AH‹NH3› The Moment Equations After applying the summation:

  21. ‹NH1›= PH(1) + 2PH(2) + +kPH(k) ‹NH2›= PH(1) + 22PH(2) + +k2PH(k) ‹NHk›= PH(1) + 2kPH(2) + +kkPH(k) Truncating the Equations PH(NH > k) = 0 1. Set the cutoff 2. Express the (k+1)th moment by the first k moments

  22. ‹NH1›= PH(1) + 2PH(2) + + kPH(k) k ‹NH2›= PH(1) + 22PH(2) + +k2PH(k) i=0 ‹NHk›= PH(1) + 2kPH(2) + +kkPH(k) ‹NHk+1› = SCi‹NHi› Truncating the Equations PH(NH > k) = 0 1. Set the cutoff 2. Express the (k+1)th moment by the first k moments 3. Plug into the first k moment equations

  23. ‹NH› = FH + (2AH - WH)‹NH›- 2AH‹NH2› ‹NH2› = FH + (2FH + WH - 4AH)‹NH› + (8AH - WH)‹NH2› - 4AH‹NH3› 1. Set the cutoff → k=2 Moment Equations for H2 Production ‹NH3›= 3‹NH2› - 2‹NH› 2. Reduce excessive moments → 3. Plug into the equations…

  24. ‹NH› = FH + (2AH - WH)‹NH›- 2AH‹NH2› ‹NH2› = FH + (2FH + WH + 4AH)‹NH› - (4AH + 2WH)‹NH2› ‹NH› = FH + (2AH - WH)‹NH›- 2AH‹NH2› ‹NH2› = FH + (2FH + WH - 4AH)‹NH› + (8AH - WH)‹NH2› - 4AH‹NH3› 1. Set the cutoff → k=2 ‹NH3›= 3‹NH2› - 2‹NH› 2. Reduce excessive moments → 3. Plug into the equations… Moment Equations for H2 Production

  25. RH vs. Grain Size 2

  26. H H2 H2O OH O2 OH O The challenge: Reduction of the excessive moments ‹N1aN2bN3c› =SClnm‹N1lN2nN3m› k-1 lmn=0 Moments for Complex Networks The probability: P(N1,N2,N3) The moments:‹N1aN2bN3c› The cutoff: Ni < ki

  27. k-1 ‹N1aN2b› = SN1aN2b P(N1,N2) N1N2=0 V(a,b) P(N1,N2) M(N1,N2,a,b) v = M p k-1 ‹N1aN2b› =SCnm‹N1nN2m› mn=0 Reduction of Excessive Moments The probability: P(N1,N2)

  28. ‹N1›, ‹N2›, ‹N3› H H2 ‹N12› H2O OH ‹N22› OH O O2 Setting the Cutoffs ‹N1N2› ‹N1N3› 3 vertices + 2 edges + 2 loops = 7 equations

  29. Production Rates vs. Grain Size

  30. 7 vertices 8 edges 2 loops 17 equations H2CO H3CO OH HCO H O CO H3CO CH3CO + H2O H2CO H2 CO2 + H OH HCO CO2 O2 Multi-Specie Network

  31. Production Rates vs. Grain Size

  32. Summary • The advantages of the moment equations: • Reliable even for low coverage • Efficient • Linear • Easy to incorporate into rate equation models • Directly generate the required moments • Further applications should be tested.

  33. The moment equations validity - For small grains For large grains Cutoff justified PH(NH) is Poisson Moment equations valid under all circumstances • Second order: (h << 1) • The equations are valid • First order: (h ≈ 1) • Production rate is accurate but population size may deviate Revealing the Trick

More Related