420 likes | 659 Views
11. Numerical Differentiation and Integration 11.3 Better Numerical Integration, 11.4 Gaussian Quadrature, 11.5 MATLAB ’ s Methods. Natural Language Processing Lab Dept. of Computer Science and Engineering, Korea Univertity CHOI Won-Jong ( wjchoi@nlp.korea.ac.kr )
E N D
11. Numerical Differentiation and Integration11.3 Better Numerical Integration, 11.4 Gaussian Quadrature, 11.5 MATLAB’s Methods Natural Language Processing Lab Dept. of Computer Science and Engineering, Korea Univertity CHOI Won-Jong (wjchoi@nlp.korea.ac.kr) Woo Yeon-Moon(wooym@nlp.korea.ac.kr) Kang Nam-Hee(nhkang@nlp.korea.ac.kr)
Contents • 11.3 BETTER NUMERICAL INTEGRATION • 11.3.1 Composite Trapezoid Rule • 11.3.2 Composite Simpson’s Rule • 11.3.3 Extrapolation Methods for Quadrature • 11.4 GAUSSIAN QUADRATURE • 11.4.1 Gaussian Quadrature on [-1, 1] • 11.4.2 Gaussian Quadrature on [a, b] • 11.5 MATLAB’s Methods
11.3.1 Composite Trapezoid Rule • 11.3.2 Composite Simpson’s Rule CHOI WonJong (wjchoi@nlp.korea.ac.kr)
11.3.1 Composite Trapezoid Rule CHOI WonJong (wjchoi@nlp.korea.ac.kr)
11.3 BETTER NUMERICAL INTEGRATION • Composite integration(복합적분) : Applying one of the lower order methods presented in the previous section repeatedly on several sub intervals.
11.3.1 Composite Trapezoid Rule • If we divide the interval of integration, [a, b], into two or more subintervals and use the trapezoid rule on each subintervals, we obtain the composite trapezoid rule.
11.3.1 Composite Trapezoid Rule • If we divide the interval into n subintervals, we get • MATLAB CODE
11.3.1 Composite Trapezoid Rule • Example 11.9 n=1 n=2 n=3 n=4 n=20 n=100
11.3.1 Composite Trapezoid Rule • Example 11.9
11.3.2 Composite Simpson’s Rule CHOI WonJong (wjchoi@nlp.korea.ac.kr)
11.3.2 Composite Simpson’s Rule • Example 11.10
11.3.2 Composite Simpson’s Rule • Applying the same idea of subdivision of intervals to Simpson’s rule and requiring that n be even gives the composite Simpson rule. • [a,b]를 two subintervals [a,x2], [x2, b]로 나눈다면,
11.3.2 Composite Simpson’s Rule • In general, for n even, we have h=(b-a)/n, and Simpson’s rule is
11.3.2 Composite Simpson’s Rule • Example 11.10
11.3.2 Composite Simpson’s Rule • Example 11.11 Length of Elliptical Orbit
11.3.2 Composite Simpson’s Rule • Example 11.11 Length of Elliptical Orbit • days 0 10 20 30 40 50 60 70 80 90 100 • r = [0.00 1.07 1.75 2.27 2.72 3.14 3.56 4.01 4.53 5.22 6.28] • Using Composite Simpson’s Rule and the length between day 0 and 10 (n=20) is 0.88952. (Trapezoid=0.889567, Text=0.8556) • Using Composite Simpson’s Rule and the length between day 60 and 70 (n=20) is 0.382108. (Trapezoid=0.382109, Text=0.3702) • The former is 2.3279 times faster than the latter.
11.3.3 Extrapolation Methods for Quadrature Woo Yeon-Moon(wooym@nlp.korea.ac.kr)
사다리꼴 simpson Richardson Expolation • Truncation error(절단 오차)
계산오차 trapezoid simpson 세부 구간의 수 Richardson Expolation • To obtain an estimate that is more accurate • using two or more subintervals (h를 줄임) • 그러나, 세부구간의 수가 일정한 범위를 넘어서면 round-off error가 커지게 된다. • Richardson Extrapolation 간격이 다른 2개의 식을 구한 결과를 대수적으로 정리함으로써 보다 정확한 값을 산출
Richardson Extrapolation • Richardson Extrapolation using the trapezoid rule (if h_2 = ½ h_1) Simpson rules
Example 11.12 Integral of 1/x • start with one subinterval (h=1) • two subintervals (h=1/2) • to apply Richardson extrapolation • exact value of the integral is ln(2)=0.693147..
Example 11.12 Integral of 1/x • Form a table of the approximations • 0.6944 ≠0.693147
Romberg Integration • Approximate an Error • Trapezoid rules : • Richardson extrapolation : • continued ( using simpson rules)
Romberg Integration • Improving the result by Richardson extrapolation • Romberg integration : iterative procedure using Richardson extrapolation • k means the improving level(= ) 1st 2nd 3rd
Example 11.12 Integral of 1/x using Romberg Integration • Trapezoid rule • For k=0, I_0 = 0.75 • For k=1, I_1 = 0.7083 • For k=2, I_2 = 0.6941 • To apply Richardson extrapolation
Example 11.12 Integral of 1/x using Romberg Integration • second level of extrapolation
Example 11.12 Integral of 1/x using Romberg Integration • five levels of extrapolation to find values for
11.4 Gaussian Quadrature Kang Nam-Hee (nhkang@nlp.korea.ac.kr)
11.4.1 Gaussian Quadrature on [-1,1] • Gaussian Quadrature Formular • Get the definite integration of f(x) on [-1,1]using linear combinations of coefficient ck and evaluated function value f(xk) at the point xk • Appropriate values of the points xkand ck depend on the choice of n • By choosing the quadrature point x1 ,…xn as the n zeros of the nth-degree Gauss-Legendre polynomial, and by using the appropriate coefficients, the integration formular is exact for polynomials of degree up to 2n-1
11.4.1 Gaussian Quadrature on [-1,1] • Gaussian Quadrature Formular (cont.) • n=2 • n=3
11.4.1 Gaussian Quadrature on [-1,1] • Example 11.13 integral of exp(-x2) Using G.Q Table 11.2 parameters of Gaussian quadrature
11.4.1 Gaussian Quadrature on [-1,1] • Gaussian-Legendre Polynomials
11.4.2 Gaussian Quadrature on [a,b] • Extends Gaussian Quadrature for f(t) on [a, b] • by Transformation f(t) on [a, b] to f(x) on [-1,1] • For the given integral • change interval of t by using next formular • so the interval
11.4.2 Gaussian Quadrature on [a,b] • Extends Gaussian Quadrature for f(t) on [a, b] (cont.) • f(t)rewrite for variable x remark the factor (b-a)/2 (∵td convert to dx) • Apply f(x) to the integral
11.4.2 Gaussian Quadrature on [a,b] • Example 11.14 • integral of exp(-x2) on [0,2] using G.Q with n = 2 • Consider again the integral • Transform f(t) on [0,2] to f(x) on [-1,1] using next formular
11.4.2 Gaussian Quadrature on [a,b] • Example 11.14 (cont) • So we can get • Apply Gaussian Quadrature to the integral with n = 2
11.4.2 Gaussian Quadrature on [a,b] • Matlab function for Gaussian Quadrature
11.5 MATLAB’s Methods Woo Yeon-Moon(wooym@nlp.korea.ac.kr)
11.5 MATLAB’s Methods • p=polyfit(x,y,n) – find the coefficients of the polynomial of degree n • polyder(p) - calculates the derivative of polynomials • diff(x) - x = [1 2 3 4 5]; • y = diff(x) • y = 1 1 1 1 • traps(x,y) • Q=quad(‘f’,xmin,xmax) (simpson rules) • Q=quad8(‘f’,xmin,xmax) (Newton-Cotes eight-panel rule)