1 / 22

Challenges in the middle years: Curriculum literacy, expertise and “good-enough” knowledge

Challenges in the middle years: Curriculum literacy, expertise and “good-enough” knowledge. Peter Freebody The University of Sydney Adelaide, November 12, 2010. My aims are to convince you that: . teachers teach reading in all subjects from K-12 (and beyond) but

kevyn
Download Presentation

Challenges in the middle years: Curriculum literacy, expertise and “good-enough” knowledge

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Challenges in the middle years: Curriculum literacy, expertise and “good-enough” knowledge Peter Freebody The University of Sydney Adelaide, November 12, 2010

  2. My aims are to convince you that: • teachers teach reading in all subjects from K-12 (and beyond) but • basic questions about “reading” – what does it mean to read and how do we teach that ? - are critical and ongoing, and so • there is an urgent need for research & PD on the teaching of curriculum-specific literacy in the middle and high-school years (including classroom research), and that • there are critical connections between curriculum-specific literacy learning, identity and teacher wellbeing

  3. One obvious lesson from all of these studies of Yr 11 classrooms? • there are two kinds of Yr 11 classrooms

  4. From Christie and Derewianka 2008: • Simple commonsense knowledge expressed in congruent language with simple attitudinal / evaluative expression ( >> early childhood) • commonsense knowledge elaborated as language resources expand & grammatical metaphor emerges with expanded attitudinal / evaluative expression (mid childhood-early adolescence) • knowledge becomes more ‘uncommonsense’, grammatical metaphor with expanded attitudinal / evaluative expression extended (mid adolescence) • ‘uncommonsense’ knowledge expressed in non-congruent language , abstraction, generalisation, judgments and opinions (late adolescence >>)

  5. An example from Year 11 “a model a chemist would use …” Eg #1 roll film!

  6. 1. Yr 11 Biology, Structure of DNA(1 min 46 sec) <slide of DNA diagrams> • “so let’s assemble our nucleotide together (.) deoxyribo-sugar, phosphate and base (.) so in our stylized diagram here you just can see we’ve got our phosphate^ which was our round circle (.) we’ve got our dioxyribo-sugar^ and we’ve got our baseV

  7. 2. Yr 11 Biology, Structure of DNA • and sometimes we actually sort-of draw the base coming off and that’s fine (.) now it’s, • once again as a chemist would draw it, • there’s our phosphate group^ • it’s still in the green so you can identify the colours, • here is our dioxyribo-sugar^ and there is our baseV • yep? • as you’re going through have a look at these diagrams, have a look at these representations because, we we we’ll be seeing at the end which ones you found most useful as we go through.

  8. 3. Yr 11 Biology, Structure of DNA <new slide> “DNA is made up of many nucleotides joined by phosphodiester bonds (covalent bonds)” • Now of course DNA is not just made up of one nucleotide is it it’s a very very very lo:::ong molecule made up of lots of nucleotides strung together or bonded together ahmm and it’s made up of these ahmm nucleotides we talk about them in terms of being a covalent bond; in fact it’s a phosphodiester bond but you can call them covalent and that’s fine because you know that, you know that covalent bonds will actually make, bond the nucleotides together and then between the bases, as we said, is a hydrogen bond

  9. 4. Yr 11 Biology, Structure of DNA <new slide of DNA structure> • OK (1) here’s a couple of nucleotides together^ so let’s have a look. There’s the there’s one nucleotide right here there’s our phosphate^ our sugar^ there’s our basev (.) phosphate-sugar-basev phosphate-sugar-basev • so:o you can see we’re just getting one strand here and that’s coming in chemical terms, because < new slide with chemical models> ahh • that kind of model would be the one a chemist would use

  10. How is she teaching the reading of these materials?(drawing on Jewitt, Kress, Gibbens, Heap) • establishing interpretation by elaborating the transduction work from image to language • connecting the interpretation by shuttling registers • streamlining the interpretation by establishing a hierarchy of significance • making the interpretation accountable by projecting what will need to be done by the students on the basis of their reading

  11. Example #1: A corpus text study (Muspratt 2005) • Sample of Science textbook chapters • Unit is chapter (n=231) • Physics, chemistry, biology (& miscellaneous: (measurement astronomy, scientific methods) • 5 series x 3 each books = 15 books • Yrs hi schl yrs 8-10 (first 3 years of high school in Queensland) • Clustered on bases of vocabulary diversity (vs repetition), high frequency function wds, grammatical formations

  12. 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Repetition of frequent vocab High Diversity Low Diversity -1.5 -1.0 -0.5 0.0 0.5 1.0 Category Quantifications for Vocabulary Diversity DIMENSION 2 DIMENSION 1

  13. 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Repetition of frequent vocab High Diversity Function wds for Descriptive Accounts Low Diversity Function wds to Establish Procedures Function wds to Elaborate Classifications Function wds to Establish Classifications -1.5 -1.0 -0.5 0.0 0.5 1.0 Category Quantifications for Diversity and High Frequency Function Words groups DIMENSION 2 DIMENSION 1

  14. Category Quantifications for Diversity, High Frequency Function Words groups and Grammar groups 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Repetition of frequent vocab High Diversity Function wds for Descriptive Accounts Science as relating past events Low Diversity Science as elaborated descriptions of phenomena Science as following conditional rules Function wds to Establish Procedures Function wds to Elaborate Classifications Function wds to Establish Classifications Science as Establishing Category Systems -1.5 -1.0 -0.5 0.0 0.5 1.0 DIMENSION 2 DIMENSION 1

  15. Function wds for Descriptive Accounts Repetition of frequent vocab Science as relating past events Low Diversity Science as elaborateddescriptionsof phenomena Science as following conditional rules Biology Physics Chemistry Function wds to Elaborate Classifications Function wds to Establish Classifications Science as Establishing Category Systems -1.5 -1.0 -0.5 0.0 0.5 1.0 Combined Category Quantifications and Discipline 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Function wds to Establish Procedures DIMENSION 2 High Diversity DIMENSION 1

  16. As the disciplines / curriculum areas grow apart in the middle school years … Freebody and Muspratt (2007) concluded [The disciplines] have been resources for cutting beneath the surfaces of experience, gearing young people into an ‘explicable’ world beyond the touchstones of the tribe – commonsense and dogma. The literacy inquiry, therefore, concerns … the linguistic, textual and interactional formats that vary across disciplinary formations.

  17. How organisationally troublesome it is to know that literacy education is not over with by Year 4? • The curricular location of the responsibility for teaching ‘what counts’ as adequate literacy for school? • The curricular location of the responsibility for providing students with ways of talking about the representation-interpretation relationship? • The need for a clear curricular distinction between generic and curriculum-specific literacy demands and proficiencies.

  18. A ‘meso-level’ readership? “Working scientists have a very low opinion of the way science is reported, which shades without too much difficulty into a belief that the public is too stupid to understand science. In the case of global warming, these factors have come together to create a situation where the scientists involved are not just talking in a new way, one unfamiliar to both them and us, but are in effect trying to sell us something. And we the public might be undereducated, but we know not to trust entirely someone who is trying to sell us something. The impression that some scientists are consciously trying to make us more afraid is a potent aid to the sceptics … We deeply don’t want to believe this story.” John Lanchester, 2007, p. 6

  19. Reading for when they get a vote “Challenges such as climate change call for more and even more capable environmental scientists; perhaps more critically in democratic societies such as Australia, they call for voters who understand the role of science, a discipline- aware populace that constitutes a more sophisticated ‘lay’ readership, better positioned to make personal, community, and political choices.” Freebody, Martin & Maton, 2008

  20. An education into a literate life • Entrée into literate engagement with domestic, civil and vocational life • Belief in the understand-ability of the world around us • Belief in the change-ability of the world around us • Belief in literacy practice as a setting for individual and collective agency • Belief in literacy education as entrée into the collective relevance of individual experience and vice –versa (Freebody, 2007)

  21. Acknowledging colleagues • The University of Sydney: Tim Allender, Jim Martin, Karl Maton, Erika Matruglio • Macquarie University: John Hedberg, Penny van Bergen, Wilhelmina van Rooy • University of Queensland: Georgina Barton, Kim Nichols, Tony Wright • Queensland University of Technology: Nan Bahr

  22. References Christie, F. & Derewianka, B. (2008). School discourse. London: Continuum. Freebody, P. (2007). Literacy education in schools: Research perspectives from the past, for the future. Camberwell, Vic.: Australian Council for Educational Research. . Freebody, P., Martin, J.R. & Maton, K. (2008). Talk, text, and knowledge in cumulative, integrated learning. Australian Journal of Language and Literacy, 31, 188-201. Freebody, P. & Muspratt, S. (2007). Beyond generic knowledge in pedagogy and disciplinarity: The case of Science textbooks. Pedagogies, 2, 35-48. Lanchester, J. (2007). Warmer, warmer … in London Review of Books, 29, 6, 3-9. Muspratt, S. (2005). Representing scientific knowledge in textbooks: A corpus study. Unpublished doctoral thesis, Brisbane: Griffith University.

More Related