110 likes | 274 Views
Chapter 26 Similarity, Interactive Activation, and Mapping: An Overview. Robert L. Goldstone and Douglas L. Medin Speaker: 안성용. Introduction. Similarity Dogs and wolves appear similar. Why? They share many properties Property listing and matching There is more to similarity
E N D
Chapter 26Similarity, Interactive Activation, and Mapping: An Overview Robert L. Goldstone and Douglas L. Medin Speaker: 안성용
Introduction • Similarity • Dogs and wolves appear similar. • Why? • They share many properties • Property listing and matching • There is more to similarity • More structured representation • More sophisticated process • Purpose • Human scene comparison에서 mapping process에 대해 설명 • New experimental finding • Interactive activation model of mapping and similarity
Perception of motion People must create correspondence between the separate image frames Maximize the overall similarity between the frames In the Top display, dot 3 mapped into dot 2 In the bottom display, dot 1 mapped into dot 2 Mapping is constrained by local affinities and by global consistency 기존의 모델들은 거의 global consistency를 고려하지 않는다. Mapping process in comparison 1 2 3 1 2 3
Models of Similarity and Mapping • Multidimensional Scaling(MDS) • Geometrical model of the data • 각 object는 N-Dimensional space에 point로 나타남. • Tversky’s Contrast model • SIM(A,B)=α·F(A∩B)-β*f(A-B)-х*f(B-A) • 문제점 • Object aligning이나 feature weighting이 comparison과 독립적으로 진행된다. • Conjunction of property • Feature의 개수가 exponential하게 증가한다. • MOP와 MIP가 어떻게 similarity에 영향을 미치는지에 대한 실험적인 증거가 없다.
MIPs increase similarity more than MOPs (2Mops-1MOP)>(1MOP-0MOPs) why? Influence of a MOP depends on the other feature matches True mapping Vs false mapping True mapping, 즉 MIP가 많을 수록 similarity가 높을 것이다. MOP decrease mapping accuracy Experimental Support for Alignment in Comparison A C B D
Other Experimental Finding • MIPs and Feature Distribution • Feature match가 집중되어 있을 수록 similarity는 상승한다. • (AAAA, BBBB) | (AAAA, XXXX) similarity=5.2 • (AAAA, BBBB) | (AAAX, XXXB) similarity=4.8 • Nondiagnostic Feature and Mapping Accuracy • Correspondence를 구분하는데 도움이 되지 않는 feature match도 mapping accuracy를 상승시킨다 • (AAAA, AAAB) | (XXXA, XXXB) false mapping=33% • (AAAA, AAAB) | (AAAA, AAAB) false mapping=17% • The time course of MIPs and MOPs • MOPs는 프로세스의 이른 시점에서 similarity에 강력한 영향력을 행사한다. • 시간이 지남에 따라 Global consistency를 적용되기 시작한다. • Sensitivity to Feature of Aligned and Unaligned Object • Aligned object의 feature에 대해 더 민감하다.
Link Consistent가 있는 node들끼리는 excitatory link를 그렇지 않으면 inhibitory link를 연결한다. Matchvalue가 0.5보다 크면 feature-to-feature node의 activation을 증가시킨다. Node Feature-to-feature나 object-to-object의 관계를 나타낸다. 각 node는 0과 1사이의 activation값을 가진다. Activation이 높을 수록 해당 node에 관련된 feature나 object들의 correspondence가 강하다는 것을 의미한다. Feature-to-feature node에는 activation이외에도 matchvalue라는 것이 있다. 각node는 다른 node들과 activation을 주고 받는다. A Brief Overview of SIMA
A Brief Overview of SIMA • net input to node i • New activation of node at time t+1 • similarity • n: number of afferent link • Aj(t): activation of node j • Wij: weight of link • MAX: maximum activation Cycle이 진행될 수록 node의 activation은 global consistency에 영향을 받는다.
SIAM에는 feature match가 in of place인지 out of place인지 판단할 수 있는 능력이 있다. Time course prediction Nondiagnostic feature도 match가 이루어진다면 activation을 높이므로 mapping accuracy를 높일 수 있다. Aligned object에서 일어나는 feature (mis)match에 대해서 더 sensitive하다. Evaluation of SIAM
Conclusion • The act of comparing things naturally involves aligning the parts of the things to be compared • Similarity assessments are well captured by an interactive activation process between feature and object correspondence • Feature and object alignment mutually influence each other • What counts as a feature match, and how match it will count, depends on particular things being compared