1 / 11

On Desk: Pencil Calculator Math Journal MSA 2.2 Classwork Worksheet

Engage in Lesson 2.1 and Lesson 2.2 A-D, examining linear relationships through tasks, worksheets, and tracking sheets. Analyze graphs, tables, and equations to determine line steepness and predict outcomes.

khamilton
Download Presentation

On Desk: Pencil Calculator Math Journal MSA 2.2 Classwork Worksheet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Math CC8 – Be Prepared Quick Start Expectations On Desk: • Pencil • Calculator • Math Journal • MSA 2.2 Classwork Worksheet Homework Tracking Sheet • HW: p. 38, #2, 4, 6, #37 • Warm Up: • 2(8X + 4) • 5 + 2(8X + 4)

  2. Tasks for Today • Complete Lesson 2.1 • Lesson 2.2 A-D • Begin HW?

  3. Do the tables below represent a linear relationship? Why or why not? As x increases by one, the value of y increases at a constant rate. LINEARand NOT Proportional. LINEARand Proportional. Ex: 1/6 ≠ 2/9 ≠3/12 Ex: 1/4

  4. Use Lesson 2.2 notes worksheet for part A.

  5. Show #3 & #4 on WS Key

  6. 50 m; d = 2.5 (20) After 20 sec, Henri is d = 45 + 20, so d = 65 65m – 50m = 15m apart after 20 sec No. Substitute 26 for t, and Henri will be 71m, and Emile will be 65m. Graph isn’t always exact, check table or equation! Emile will overtake Henri sometime after 75m, or after 30 seconds.

  7. Table – The line is steeper if its rate of change is greater (if it is negative, greater means a greater absolute value). Equation – The line is steeper if the coefficient, or the number you multiply x by, has a greater absolute value.

  8. Emile – (0, 0) Henri – (0, 45) These points represent each brother’s starting point in relation to the starting line. (y-intercept) Table – when x (time) is 0, you find y (distance) Equation – the value of y when x = 0 The starting point = y-intercept (0, __ )

More Related