230 likes | 339 Views
The PAMELA electromagnetic calorimeter: performances. E. Mocchiutti 1 , M. Albi 1 , M. Boezio 1 , V. Bonvicini 1 , J. Lund 2 , J. Lundquist 1 , M. Pearce 2 , A. Vacchi 1 , G. Zampa 1 , N. Zampa 1 INFN Trieste 2. KTH Stockholm. The PAMELA experiment The electromagnetic calorimeter
E N D
The PAMELA electromagnetic calorimeter: performances • E. Mocchiutti1, M. Albi1, M. Boezio1, V. Bonvicini1, J. Lund2, • J. Lundquist1, M. Pearce2, A. Vacchi1, G. Zampa1, N. Zampa1 • INFN Trieste 2. KTH Stockholm
The PAMELA experiment • The electromagnetic calorimeter • Particle identification • Results • Conclusions Presentation outline
Naples CNR, Florence Bari Florence Frascati Rome Trieste The PAMELA collaboration Russia: Italy: USA: Moscow St. Petersburg GSFC India: NMSU Mumbai Germany: Sweden: Siegen KTH,Stockholm
The PAMELA experiment • Soyuz-TM Launcher from Baikonur • Earth-Observation- Satellite • PAMELA mounted inside aPressurized Container, attached to Satellite pointing to space • Lifetime >3 years
The PAMELA experiment Quasi-polar (70.4°) Elliptical (300÷600 km)
Spatial Resolution • 3.1 μm bending view • 13.1 μm non-bending view • MDR from test beam data 1 TV • Six planes of scintillators strips oriented in the x and y directions • time resolution of ~300 ps • dE/dx determines particle Z Shower tail catcher scintillator ND p/e separation capabilities >10 above 10 GeV/c increasing with energy The PAMELA experiment Anti-coincidence shield Calorimeter
PAMELA will explore: • Antiproton flux 80 MeV - 190 GeV • Positron flux 50 MeV – 270 GeV • Electron flux up to 400 GeV • Proton flux up to 700 GeV • Electron/positron flux up to 2 TeV • Light nuclei (up to Z=6) up to 200 GeV/n • Light isotopes (D, 3He) up to 1 GeV/n • Antinuclei search (sensitivity better than 10-7 in He/He) + • Long-term monitoring of the solar modulation of cosmic rays • Energetic particles from the Sun (e+) • High-energy particles in the Earth magnetosphere The PAMELA experiment
The PAMELA experiment Anti-protons Positrons
The PAMELA experiment Confirmed launch date: 15th June 2006 next thursday!
22 W absorbers 0.26 cm/0.74 X0 • 44 Si planes (380mm thick) • 8x8 cm2 detectors in 3x3 matrix • 96 strips of 0.24 cm per plane • Total depth: 16.3 X0 / ~0.6 int. len. • Mass 110 kg • Power consumption 48 W The PAMELA calorimeter The electromagnetic calorimeter
PAMELA will need to detect: • Anti-protons, electrons background • Positrons, protons background Rejection power needed: 105-106 Particle identification
Shower identification main variables: • Total energy deposit • Starting point of the shower • Longitudinal shower profile • Transverse shower profile • Topological development of the shower Particle identification
PAMELA event Ground Data muon: 2.8 GV
PAMELA event Ground Data hadron: 6.6 GV
Ground data • (Rome 2005) Particle identification
Particle identification FM SPS, September 2003 Magnet/Tracker, Calorimeter SPS, July 2002 Detectors tested at PS / SPS Test facilities as Prototypes and in FM configuration SPS, July 2000
“gpamela” simulation: • PAMELA apparatus • Monte Carlo - GEANT 3.21 • Default GHEISHA hadron shower package Particle identification e (200 GeV/c)
Test-beam data • Particle momentum 50 GeV/c • Cut at 7300 mip • 99.98% proton reduction • 4.3% electron reduction Particle identification Total detected energy 3342 67504
Test-beam data • Particle momentum 50 GeV/c • Cut at 1500 • 50% proton reduction • 2.5% electron reduction Particle identification Topological variable
Closed symbols: test beam data • Open symbols: simulations • Solid arrows: test beam data • Dashed arrow: simulations Results
The PAMELA calorimeter has been tested and studied • Electron/hadron separation has been determined • Possibility to identify rare antiproton and positron components with small background Conclusions