180 likes | 836 Views
Column Buckling Analysis. By: Anthony Beeman. Euler’s Fundamental Buckling Problem. x. P. Assumptions: Straight Column Homogeneous Material Boundary Conditions: Pinned-Pinned Governing Equations:. y. N. M. L. v. v. A. n =mode L = Original Column Length E= Young’s Modulus
E N D
Column Buckling Analysis By: Anthony Beeman
Euler’s Fundamental Buckling Problem x P • Assumptions: • Straight Column • Homogeneous Material • Boundary Conditions: • Pinned-Pinned • Governing Equations: y N M L v v A n=mode L= Original Column Length E= Young’s Modulus I= Moment of Inertia P P
Other End Conditions x P P y Modified Euler Buckling Formula: L L= Original Column Length Le= Effective Column Length E= Young’s Modulus I= Moment of Inertia Le=L Le=2L P P
Problem Analyzed P Mechanical Properties r=0.5 M A A Cross Section A-A L=10 M Calculated Critical Load [N]
Comsol Results Case 1 2,904 DOF Case 2 12,723 DOF Case 3 73,623 DOF
Abaqus Results Case 1 285 DOF Case 2 490 DOF Case 3 48,145 DOF
ANSYS Results Case 1 2,904 DOF Case 2 12,723 DOF Case 3 73,623 DOF