1 / 37

Фундаментальные параметры  рассеяния в распадах заряженных каонов эксперимент NA48/2

Фундаментальные параметры  рассеяния в распадах заряженных каонов эксперимент NA48/2. содержание. Эксперимент NA48/2 « cusp » эффект и параметры киральной теории сравнение с Ke4 результатами. Эксперимент NA48/2.

kieve
Download Presentation

Фундаментальные параметры  рассеяния в распадах заряженных каонов эксперимент NA48/2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Фундаментальныепараметрырассеяниявраспадахзаряженныхкаоновэксперимент NA48/2 В.Кекелидзе, "Марковские чтения"

  2. содержание • Эксперимент NA48/2 • «cusp» эффект и параметры киральной теории • сравнение с Ke4 результатами В.Кекелидзе, "Марковские чтения"

  3. В.Кекелидзе, "Марковские чтения" Эксперимент NA48/2 Основная задача - Поиск зарядовой асимметрии в распадахK(3) 2003 run: ~ 50 days 2004 run: ~ 60 days Total statistics in 2 years: K+: ~4·109 K00: ~1·108 Rare K± decays: BR’s down to 10–9can be measured > 200 TB of data recorded

  4. Установка NA48 В.Кекелидзе, "Марковские чтения" • High resolution • magnetic spectrometer (+): • 2 + 2 drift chambers; • magnet with • momentum kick 265 MeV/c • electromagnetic cal. (00): liquid krypton (~10m3 at 120 K) 13212 cells granularity 2x2 cm2 Rate ~106 KL decays / spill

  5. В.Кекелидзе, "Марковские чтения" LKr - э-м жидко-криптоновый калориметр

  6. В.Кекелидзе, "Марковские чтения" PK spectra, 603 GeV/c BM z 10 cm NA48/2 beam line Simultaneous K+ and K beams: large charge symmetrization of experimental conditions 2-3M K/spill (/K~10), decay products stay in pipe. Flux ratio: K+/K– 1.8 magnet 54 60 66 K+ K+ beam pipe Be target focusing beams K ~71011ppp, 400 GeV Second achromat K • Cleaning • Beam spectrometer (resolution 0.7%)‏ Front-end achromat Quadrupole quadruplet Beams coincide within ~1mm all along 114m decay volume • Momentum selection • Focusing •  sweeping vacuum tank He tank + spectrometer 1cm not to scale 200 250 m 50 100

  7. В.Кекелидзе, "Марковские чтения" 2003 + 2004: 59.6 mln events +–threshold An anomaly was observed at invariant massM(00) = 2m+ inK00decays never observed in previous experiments «Сusp» - эффект • Cusp - «остриё», • особенность в спектре, • связаннаясизломом; • вотличиеотпика, • достоверноенаблюдение • такойособенности • требует • большойстатистики • и • высокогоразрешения

  8. «Сusp» - эффект и параметры киральной теории длиныпионногорассеяния важнейшим свободным параметром киральной теории (ChPT) является кварковый конденсат <qq>, который определяет относительные размеры масс и импульсов в степенном разложении a0 и a2- длины ppрассеяния (S-волны) соответственно с изоспином I=0 и I=2, также входят в амплитуды pp-рассеяния связь <qq> с a0 и a2 известна из теории с высокой точностью; поэтому измерения a0 и a2 позволяют получить важные ограничения для параметров ChPT Pion scattering lengths can be measured in the study of the cusp-effect in K00decays 2003 result: PLB 633 (2006) 173, Cabibbo-Isidori theoretical framework] N. Cabibbo, PRL 93 (2004) 121801 Анализ был проведен независимо 2-мя группами из Пизы и Дубны В.Кекелидзе, "Марковские чтения"

  9. K00 selection В.Кекелидзе, "Марковские чтения" accidental photon (Dik)2 m02 = 2EiEk(1-cos) ≈ EiEk2 = EiEk (zik)2 Ek LKr z Em Dik K-decay vertex zlm Ei zik z El selected photon 20 mass resolution , MeV/c2 … excellent at low M00! M2(00), (GeV/c2)2 for each photon pair (i,k) a decay vertex is reconstructed along the beam axis under the assumption of 0 decay m0 – mass of 0 Ei, Ek – energy of i, k Dik – distance between iand k on LKr zik – distance from 0 decay vertex to LKr 103 MK-3 mass spectrum(2004 data)‏ Events Background isnegligible

  10. Объяснение «Cusp» - рассеяние в конечном состоянии В.Кекелидзе, "Марковские чтения" + K+ 0 0 1–()2 M00 2m+ No M1 amplitude M1 amplitude present:13% depletionunder the threshold Arbitrary scale N. Cabibbo, PRL 93 (2004) 121801 M(K00)= M0 + M1 Direct emission: Kaon rest frame: u=2mK∙(mK/3Eodd)/m2 v=2mK∙(E1E2)/m2 M0 = A0(1+g0u/2+h0u2/2+k0v2/2)‏ Rescattering amplitude: Negative interferenceunder threshold M1 = –2/3(a0–a2)m+M+ Combination of S-wave  scatteringlengths K3 amplitudeat threshold (isospin symmetryassumed here)‏ M2(00), (GeV/c2)2

  11. В.Кекелидзе, "Марковские чтения" One-loop diagrams: Two-loop diagrams: a) 2 scattering b) irreducible 3 scattering c) reducible 3 scattering Теория: двух-петлевые диаграммы N. Cabibbo and G. Isidori (“CI”), JHEP 503 (2005) 21 • S-wave scattering lengths(ax, a++, a+–, a+0, a00) expressed as linear combinations ofa0anda2 • isospin symmetry breaking - following J. Gasser • for example,ax=(1+/3)(a0–a2)/3,where=(m+2–m02)/m+2=0.065- isospin breaking parameter • all rescattering processes at one- & two-loop level • radiative corrections missing:(a0– a2)precision ~5% Prediction of thetwo-loop theory Arbitrary scale Cusp point No rescatteringamplitude Subleadingeffect Leading effect M2(00), (GeV/c2)2

  12. Theory: effective fields В.Кекелидзе, "Марковские чтения" G. Colangelo, J. Gasser, B. Kubis, A. Rusetsky (Bern-Bonn group: “BB”) Phys.Lett. B638 (2006) 187-194 • Non-relativistic Lagrangian for effective fields; expanding in another small parameters. • Valid in the whole decay region. • Another (in comparison with CI) part of amplitude is absorbed in the polinomial terms (so another correlations). • At two loops, algebraically different formulae for amplitude • FORTRAN code written by authors

  13. процедура фитирования В.Кекелидзе, "Марковские чтения" Log(Rij) 420x420 bins Reconstructeddistribution: FjMC = RijGi Reconstructed s3 (GeV/c2)2 Generated distributionG(M00) = G(g0,h’,a0,a2,M00)‏ fit region MINUIT minimization of 2of data/MC spectra shapes Generated s3=M200, (GeV/c2)2 (FDATA–NFMC)2 2(g0,h0,m+(a0–a2),m+a2,N)= FDATA2+N2FMC2 s3 bins 1-dimensional fit of the M00 projection Detector response matrix Rij obtained with a GEANT-based MC simulation 5 free parameters

  14. В.Кекелидзе, "Марковские чтения" Fit quality & pionium signature Points excluded from the fitdue to absence of EM correctionsin the used model 7 data bins skipped aroundthe M(+–) threshold Combined 2003+2004 sample Excess of events in the excluded interval,if interpreted as due to pionium decaying as A200,gives R=(K+A2)/(K+–) = (1.820.21)10–5. Prediction [Z.K. Silagadze, JETP Lett. 60 (1994) 689]: R=0.810–5.

  15. В.Кекелидзе, "Марковские чтения" atoms and  resonant structure with experimental resolution • Электромагнитные поправки в конечном состоянии(Gevorkian, Tarasov, Voskresenskaya, Phys.Lett. B649 159 (2007)) • Two contributions from K±→ ± decay to the K±→ ±  cusp region: • Pionium formation :  atom →  (negligible width)‏ • Additional  unbound states with resonance structure →   resonant structure (no experimental resolution)‏ In our fit we use a free parameter fatom (relative excess in the bin of width 0.00015 GeV2) to represent Pionium + resonant structure  resonant structure with experimental resolution measured value% (6 1) % is in good agreeemen with the prediction 5.8%

  16. Effect of radiative corrections В.Кекелидзе, "Марковские чтения" Bern — Bonn radiative correction to pion rescattering amplitude for 3pi decays. (Bissegger M., Fuhrer A., Gasser J., Kubis B., Rusetsky A. Nucl. Phys., B806, 2009, 178-223.) • Electromagnetic part is included into Lagrangian and all • the first-order diagrams are taken into account • But the bound states and resonant peak at the very threshold • can not be calculated perturbatively • (a free parameter fatom is used to represent the peak-like contribution) • Could be extracted as a relative effect for amplitude and • Implemented also to Cabibbo-Isidori case

  17. Effect of radiative corrections В.Кекелидзе, "Марковские чтения" 68% - probability ellipses for statistical errors only to illustrate the shift. Corrected Uncorrected

  18. Example of correlation coefficients (CI) В.Кекелидзе, "Марковские чтения"

  19. В.Кекелидзе, "Марковские чтения" Результатпо данным 2003+2004 (окончательный) (a0–a2)m+= 0.2571  0.0048stat. 0.0025syst. 0.0014ext. a2m+= –0.024  0.013stat. 0.009syst. 0.002ext. External uncertainty: due to (A++–/A+00)|threshold = (1.93-1.94)±0.015; (central value depends on fitted matrix element, error comes from PDG data) Additional theoretical uncertainty (higher order terms neglected) is estimated from the difference between results obtained using Bern-Bonn and Cabibbo-Isidori formulae:  (a0–a2)m+= 0.0088; a2m+= 0.015. The relative errors for a2 are essentially larger than (a0-a2) ones, as a2 alone leads to the second-order contribution to the cusp shape

  20. Systematical errors for independent a0, a2 В.Кекелидзе, "Марковские чтения" in units of 10-4

  21. В.Кекелидзе, "Марковские чтения" Результатпо данным 2003+2004 учитывающий ограничение из киральной теории [Colangelo et al., PRL 86 (2001) 5008]: (окончательный) (a0–a2)m+= 0.2633  0.0024stat. 0.0014syst. 0.0019ext. Theory precision uncertainty for this case is estimated by theorists: (a0–a2)m+= 0.0053 (2%). ChPT prediction : 0.2650 +/- 0.0040 Experimental precision is compatible with the theoretical one, the only problem is the theoretical uncertainty of measurement !

  22. Systematical errors with ChPT constraint (a2 is a function of a0) В.Кекелидзе, "Марковские чтения" In units of 10-4

  23.  scattering in K± →e± decay

  24. Ke4 formalism p*(e) p*()  Direction of the total  momentum in the K+ rest frame Direction of the total e+e momentum in the K+ rest frame  e K  e a rare decay [ B.R. = (4.09 ± 0.09) x 105 ] described by five variables Cabibbo – Maksymowicz variables : s≡ M2 se≡ Me2 e   For K K  ee 

  25. Ke4 formalism The form factors can be expanded as a function of M2 and Me2: In the partial wave expansion (only S and P waves) the amplitude can be written using form factors: F=Fseis+Fpeipcos G=Gpeip H=Hpeip Fs=fs+fs’q2+fs’’q4+fe’(Me2/4m2)+... Fp=fp+fp’q2+... Gp=gp+gp’q2+... Hp=hp+hp’q2+... q2=(M2/4m2)-1 F (Fp,Fs), G, H and =p-s will be used as fit parameters

  26. Ke4: selection & background Kaon momentum GeV/c  K  e   • Selection: • 3 tracks • Missing energy & missing Pt • LKr/DCH to electron PID 739500 K+ ; 411000 K- Main background sources: •  (→e The background is studied using the electron “wrong” sign events (we assume DQ=DS & total charge ±1) and cross check with MC. The total bkg is at level of 0.5%. •  with misidentified •  or  +(Dalitz) +e misidentified and s outside the LKr

  27. Ke4: Fitting procedure Data MC K+ evts 739500 49 17.7 M 1180 Evts/bin K- evts 411000 27 9.8 M 650 Evts/bin ● Data ▬ MC M • The form factors (F,G,H and ) are extracted minimizing a log-likehood estimator in each of 10(M)x5(Me)x5(cose)x5(cos)x12()=15000 equi-populated bins. In each bin the correlation between the 4+1 parameters is taken into account. • the form factors structure is studied in 10 bins of M, assuming constant form factors in each bins • a 2D fit (M, Me) is used to study the Fs expansion • all the results are given wrt to Fs(q=0) constant term, due to the unspecified overall normalization (BR is not measured)

  28. Ke4: form factors result • Systematics checks: • Acceptance • Background • PID • Radiative corrections • Evaluation of the sensitivity of the form factors on the Medependence of the normalization f’s/fs = 0.158±0.007±0.006 f’’s/fs= -0.078±0.007±0.007 f’e/fs = 0.067±0.006±0.009 fp/fs = -0.049±0.003±0.004 gp/fs = 0.869±0.010±0.012 g’p/fs = 0.087±0.017±0.015 hp/fs = -0.402±0.014±0.008 Preliminay (2003+2004 data) • All the Form factors are measured relatively tofs • first evidence offp≠0andfe’≠0 • The f.f. are measured at level of <5% of precision while the slopes at~15%(factor 2 or 3 improvement wrt previous measurements) Separately measured on K+ and K- - then combined (different statistical error)

  29. Ke4 results: а0 = 0.218 ± 0.013(stat) ± 0.007(syst) ± 0.002(theor) a2 = -0.0457 ± 0.0084(stat) ± 0.0041(syst) ± 0.0030(theor) (correlation coefficient 97%) Using ChPT link: a0 = 0.220 ± 0.005(stat) ± 0.002(syst) ± 0.006(theor)

  30. В.Кекелидзе, "Марковские чтения" Измерение длин пионного рассеяния - фундаментальных параметров киральной теории 68% - probability ellipses, full uncertainties

  31. a0=0.2186  0.0065 2% th. uncert. В.Кекелидзе, "Марковские чтения"

  32. заключение физикакаонов, как и 50 лет назад остается актуальной и является потенциальным источником новыхоткрытий В.Кекелидзе, "Марковские чтения"

  33. SPARE В.Кекелидзе, "Марковские чтения"

  34. The Ke4 decay amplitude depends on two complex phases identified with • 0 : the  scattering phase shift in the I = 0 , l= 0 state (s – wave) • 1 : the  scattering phase shift in the I = 1 , l = 1 state (p – wave) ≠ 0 in the Ke4 decay amplitude asymmetric distribution of the charged lepton direction with respect to the plane defined by the two pions ( distribution) (Shabalin 1963) The asymmetry of the distribution increases with M The Ke4 decay rate depends on the phase shift difference  = 0 – 1  is an increasing function of M ; → 0 for M→ 2m ( from scattering theory :(k) ≈ ak at very low centre-of-mass momentum k ; a is the scattering length ; a ≠ 0 for s – waves only )

  35.       NA48 / 2 (Preliminary)  distributions for four M bins 2m+ < M < 0.291 GeV 0.309 < M < 0.318 GeV 0.335 < M < 0.345 GeV 0.373 GeV < M < mK

  36.  versus M (no isospin – breaking corrections) OLD PICTURE !!! Geneva – Saclay : ~ 30,000 events , p K+ = 2.8 GeV/c BNL E865 : 406,103 events (with ~ 4.4% background), p K+ = 6 GeV/c NA48/2 : 677,510 events (with ~0.5% background), p K± = 60 GeV/c NOTE: the isospin – breaking corrections reduce  by 0.01 – 0.012 (J. Gasser)

  37. To extract scattering lengths from d=d0-d1 some external data (I=2 pp scatteringg at higher energies) and theoretical input are needed, for example: Solution of Roy equations - ACGL, Phys.Rep.353(2001), DFGS, EPJ C24 (2002) that relates d and (a0,a2) . The Universal Band centre line parametrisation corresponds to 1-parameter fit with a2=f(a0) ChPT constrain gives another relation between (a0,a2) inside Universal Band. Isospin symmetry breaking is taken into account (new)

More Related