190 likes | 286 Views
Anisotropic Coverings of Fractal sets. Harry Kennard h.r.kennard@open.ac.uk PhD Candidate Department of Applied Mathematics The Open University Supervisor: Professor Michael Wilkinson. Outline of the paper. Outline of the Talk.
E N D
Anisotropic Coverings of Fractal sets Harry Kennard h.r.kennard@open.ac.uk PhD Candidate Department of Applied Mathematics The Open University Supervisor: Professor Michael Wilkinson
Outline of the paper Outline of the Talk 1 Motivation2 Method3 Generalised Sierpinski Model4 Inertial particles in a random flow
MotivationMethod Sierpinski Inertial Locally Cartesian product structure
k k’ MotivationMethod Sierpinski Inertial Isotropicscattering Coherent scattering Require a function to characterise fractal anisotropy
δ ε vs. get straight lines plot MotivationMethod Sierpinski Inertial
MotivationMethod Sierpinski Inertial Just circles!
MotivationMethod Sierpinski Inertial Upper bound N is independent of ellipse orientation in the disk of this lie in the ellipse
MotivationMethod Sierpinski Inertial explain sier generalizations
MotivationMethod Sierpinski Inertial Inertial particles move in an incompressible fluid (velocity field u) under a synthetic turbulent velocity field Particles, and hence the flow and distribution of them, is characterised by η [0:1]
η M. Wilkinson, B. Mehlig and K. Gustavsson,Eurohysics Lett., 89, 50002, (2010). MotivationMethod Sierpinski Inertial η=0.1
η M. Wilkinson, B. Mehlig and K. Gustavsson,Eurohysics Lett., 89, 50002, (2010). MotivationMethod Sierpinski Inertial η=0.4 η
η M. Wilkinson, B. Mehlig and K. Gustavsson,Eurohysics Lett., 89, 50002, (2010). MotivationMethod Sierpinski Inertial
Thank You – Any Questions? Harry Kennard h.r.kennard@open.ac.uk PhD Candidate Department of Applied Mathematics The Open University Supervisor: Professor Michael Wilkinson