1.11k likes | 1.52k Views
计算机网络( Internet ) 历史,现状与未来. 舒炎泰 20 0 8. 计算机网络. Transportation service: move objects horse, train, truck, airplane ... Communication network: move information bird, fire, telegraph, telephone, 计算机网络 …Internet …. A Taxonomy of Communication Networks. Communication Network.
E N D
计算机网络(Internet)历史,现状与未来 舒炎泰 2008
计算机网络 • Transportation service: move objects • horse, train, truck, airplane ... • Communication network: move information • bird, fire, telegraph, telephone, • 计算机网络…Internet …
A Taxonomy of Communication Networks Communication Network • Communication networks can be classified based on the way in which the nodes exchange information: SwitchedCommunication Network BroadcastCommunication Network 广播,电视 Packet-SwitchedCommunication Network Circuit-SwitchedCommunication Network 电话 Datagram Network Virtual Circuit Network Internet
Node incoming links outgoing links Circuit Switching (电路交换-电话) • A node (switch) in a circuit switching network
Host 1 Host 2 Node 1 Node 2 DATA processing delay at Node 1 Circuit Establishment Data Transmission Circuit Termination Timing in Circuit Switching propagation delay between Host 1 and Node 1 propagation delay between Host 2 and Node 1
Circuit Switching: Multiplexing/Demultiplexing • Time divided in frames and frames divided in slots • Relative slot position inside a frame determines which conversation the data belongs to • Needs synchronization between sender and receiver • In case of non-permanent conversations • Needs to dynamic bind a slot to a conservation • How to do this?
Node incoming links outgoing links Memory Packet Switching (分组/包交换) 1961 • A node in a packet switching network
Header Data Trailer Packet Switching (分组/包交换) 1961 • Data are sent as formatted bit-sequences, so-called packets • Packets have the following structure: • Header and Trailer carry control information (e.g., destination address, check sum) • Each packet is passed through the network from node to node along some path (Routing) • At each node the entire packet is received, stored briefly, and then forwarded to the next node (Store-and-Forward Networks) • Typically no capacity is allocated for packets
Timing of Datagram Packet Switching Host 1 Host 2 Node 1 Node 2 propagation delay between Host 1 and Node 2 Packet 1 Packet 2 transmission time of Packet 1 at Host 1 Packet 1 processing delay of Packet 1 at Node 2 Packet 3 Packet 2 Packet 1 Packet 2 Packet 3 Packet 3
Host C Host D Host A Node 1 Node 2 Node 3 Node 5 Host B Host E Node 7 Node 6 Node 4 Datagram Packet Switching
Packet Switching: Multiplexing/Demultiplexing • Data from any conversation can be transmitted at any given time • How to tell them apart? • Use meta-data (header) to describe data • Datagram Packet Switching • Each packet is independently switched • Each packet header contains destination address • No resources are pre-allocated (reserved) in advance • Example: IP networks
Packet-Switching vs. Circuit-Switching • Most important advantage of packet-switching over circuit switching: ability to exploit statistical multiplexing: • Efficient bandwidth usage; ratio between peek and average rate is 3:1 for audio, and 15:1 for data traffic • However, packet-switching needs to deal with congestion: • More complex routers • Harder to provide good network services (e.g., delay and bandwidth guarantees) • In practice they are combined: • IP over SONET, IP over Frame Relay
Virtual-Circuit Packet Switching • Hybrid of circuit switching and packet switching • Data is transmitted as packets • All packets from one packet stream are sent along a pre-established path ( = virtual circuit) • Guarantees in-sequence delivery of packets • However: Packets from different virtual circuits may be interleaved • Example: ATM networks • MPLS?
Virtual-Circuit Packet Switching • Communication with virtual circuits takes place in three phases • VC establishment • data transfer • VC disconnect • Note: packet headers don’t need to contain the full destination address of the packet
Packet 1 Packet 1 Packet 1 Packet 2 Packet 2 Packet 2 Packet 3 Packet 3 Packet 3 Timing of Virtual-Circuit Packet Switching Host 1 Host 2 Node 1 Node 2 propagation delay between Host 1 and Node 1 VC establishment Data transfer VC termination
Host C Host D Host A Node 1 Node 2 Node 3 Node 5 Host B Host E Node 7 Node 6 Node 4 Virtual-Circuit Packet Switching
Internet 历史(1)Sep69 1st IMP in UCLA, Oct69 2nd IMP in SRI Internet 之父-- L. Kleinrock1999 1969
History of the Internet (3) • Sep69 1st IMP in UCLA Oct69 2nd IMP in SRI • 22:30 29Oct69 • LOGIN from UCLA to SRI CLA • We sent an “L” - did you get the “L”? YEP! • We sent a “O” - did you get the “O”? YEP! • We sent an “G” - did you get the “G”? Crash!
History of the Internet (4) • 1961-1972: Early packet-switching principles • 1961: Kleinrock – queueing theory shows effectiveness of packet-switching • 1964: Baran - packet-switching in military nets • 1967: ARPAnet conceived by Advanced Research Projects Agency (Licklider, Roberts) • 1969: first ARPAnet node operational • 1972: ARPAnet has 15 nodes • ARPAnet demonstrated publicly • NCP (Network Control Protocol) first host-host protocol • first e-mail program
History of the Internet (5) • 1972-1980: Internetworking, research networks • 1970:ALOHAnet satellite network in Hawaii (Abramson) • 1973:Metcalfe’s PhD thesis proposes Ethernet • 1974:Cerf and Kahn - 2004 A.M. Turing Award -define today’s Internet architecture • minimalism, autonomy –no internal changes required to interconnect networks • best effort service model • stateless routers • decentralized control • 1979:ARPAnet has 200 nodes, 56 kbps • Late 70’s: proprietary architectures: DECnet, SNA • Late 70’s: switching fixed length packets (-> ATM)
History of the Internet (6) • 1980’s new protocols, a proliferation of net • 1983:deployment of TCP/IP. (Critical separation; Cohen) • 1982:SMTP e-mail protocol defined • 1983:DNS defined for name-to-IP-address translation • mid-1980’s: IETF active • 1985:FTP protocol defined • 1988:TCP congestion control • new national networks: Csnet, BITnet, Minitel , NSFnet (1.5 Mbps,10,000 computers), NSI (NASA), ESNet(DOE), DARTnet, TWBNet (DARPA), • 100,000 hosts connected to confederation of networks
History of the Internet (7) • 1990’s: commercialization, the WWW • Early 1990’s: ARPAnet decommissioned • 1991: NSFnet (45 Mbps) -> commercial use of NSF (decommissioned, 1995) • Late 1990’s: • multiple private backbones • 50 million computers on Internet • 100 million+ users • backbone links running at 1 Gbps • Early 1990s: WWW • hypertext [Bush 1945, Nelson 1960’s] • HTML, http: Berners-Lee • 1994: Mosaic, later Netscape • late 1990’s: commercialization of the WWW
Growth of the Internet • Today: backbones run at 2.4/10 Gbps, 400 millions computers in 150 countries
Internet 在中国 • 1993年3月 中科院高能物理所 64 Kbps • TJU:1995.3.22 • 2006年12月 • 计算机5940万 • 用户 1.4亿 • WWW站84万 • CN域名 180万 • 国际出口带宽 257 Gbps • 连接美国、俄罗斯、法国、英国、德国、日本、韩国、新加坡等
Internet 提供的服务 • Shared access to computing resources • telnet (1970’s) • Shared access to data / files • FTP, NFS, AFS (1980’s) • Communication medium over which people interact • email (1980’s), on-line chat / messaging (1990’s) • audio, video (1990’s) • replacing telephone network? • A medium for information dissemination • USENET (1980’s) • WWW (1990’s) • replacing newspaper, magazine? • audio, video (1990’s) • replacing radio, CD, TV?
Network Components (Examples) Links Interfaces Switches/routers Ethernet card Large router Fibers Wireless card Coaxial Cable Telephone switch
趋势: 网络时代 • 每一件事务都是数字的: 声音, 视频, 音乐, 画片, 及生活日常事务 • 每一件事务都是在线的: 银行结算, 医疗记录, 各类书籍, 航空日程, 天气情况, 公路交通, … • 每个人之间都是相互联系的:医生,教师,经济人,母亲,儿子, 朋友, 敌人
趋势: 网络时代 • 实现家庭 • 教育, 办公, 购物, 娱乐/网上娱乐 • 虚拟工作场所 • 2000年,美国有五千五百万人实现远程工作 • 网络制造/电子商务 • 虚拟公司 • 虚拟制造与虚拟装配 (设计过程) • 制造过程更加分散化,并发进行 • 新型的价值链 • 虚拟兑现
网络制造 (1) • 随着基于Internet的全球化数字通信基础设施的建立,网络从单纯的信息工具变成”E-时代”的关键资源.全球经济一体化成为制造业变革的最根本的推动力。 • Internet向“资源功能”发展,基于Internet的网络化制造是适应时代的需要. • 网络制造的本质特性就是产品的制造过程更加分散化,信息的传递网络化,信息的流动伴随着各项工作的并发进行而同时发生。
网络制造 (2) • 基于Internet的虚拟制造与虚拟装配 • 在相互联结的网络上,建立24小时工作的协同工作组,大大加快了设计进度、及时获得所需要的零部件,减少库存、降低成本,提高质量
电子商务 • 信息技术和Internet引发的商务过程的变化 • 利用以Internet为核心的信息技术,进行商务活动和企业资源管理 • CIMS是企业实施电子商务的基础 • 企业实施电子商务是CIMS发展的主要标志和主要内容
电子商务产生背景 竞争环境改变 核心 产品竞争 服务竞争 范围 单个企业 全球多企业 信息、知识 资源 人、财、物 生产管理 管理重心迁移 供应/营销链管理 集中内部资源 整合外部资源 离散管理 集约管理
商务模式转化 电子商务 传统商务 • 文秘型管理 • 关注后台(企业内部) • 关注业务记录(报表) • 地区性 • 推销产品为中心 • (卖方市场) • 自我服务型管理 • 关注前端(客户关系) • 要求商业智能(分析) • 全球化 • 客户为中心 • (买方市场)
e企业的业务体系结构 客户 产品/服务 销售 服务/支持 市场营销 产品制造 供应商 合作伙伴 网络智能
网络发展趋势 • 趋势: 融合 • 趋势: 泛在(Ubiquitous) • 趋势: 信息爆炸 • 更多的网络业务流量 • 数据流量 > 话声流量 • 更快的传输介质/骨干网(Backbone) • 更大的带宽(Bandwidth) • 宽带无线网飞速增长(WLAN) (Wi-Fi) • Everything over IP